SurgPointTransformer: transformer-based vertebra shape completion using RGB-D imaging.
Authors
Affiliations (2)
Affiliations (2)
- Research in Orthopedic Computer Science, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.
- Department of Orthopaedics, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.
Abstract
State-of-the-art computer- and robot-assisted surgery systems rely on intraoperative imaging technologies such as computed tomography and fluoroscopy to provide detailed 3D visualizations of patient anatomy. However, these methods expose both patients and clinicians to ionizing radiation. This study introduces a radiation-free approach for 3D spine reconstruction using RGB-D data. Inspired by the "mental map" surgeons form during procedures, we present SurgPointTransformer, a shape completion method that reconstructs unexposed spinal regions from sparse surface observations. The method begins with a vertebra segmentation step that extracts vertebra-level point clouds for subsequent shape completion. SurgPointTransformer then uses an attention mechanism to learn the relationship between visible surface features and the complete spine structure. The approach is evaluated on an <i>ex vivo</i> dataset comprising nine samples, with CT-derived data used as ground truth. SurgPointTransformer significantly outperforms state-of-the-art baselines, achieving a Chamfer distance of 5.39 mm, an F-score of 0.85, an Earth mover's distance of 11.00 and a signal-to-noise ratio of 22.90 dB. These results demonstrate the potential of our method to reconstruct 3D vertebral shapes without exposing patients to ionizing radiation. This work contributes to the advancement of computer-aided and robot-assisted surgery by enhancing system perception and intelligence.