Sort by:
Page 90 of 3773763 results

Segmentation of coronary calcifications with a domain knowledge-based lightweight 3D convolutional neural network.

Santos R, Castro R, Baeza R, Nunes F, Filipe VM, Renna F, Paredes H, Fontes-Carvalho R, Pedrosa J

pubmed logopapersAug 1 2025
Cardiovascular diseases are the leading cause of death in the world, with coronary artery disease being the most prevalent. Coronary artery calcifications are critical biomarkers for cardiovascular disease, and their quantification via non-contrast computed tomography is a widely accepted and heavily employed technique for risk assessment. Manual segmentation of these calcifications is a time-consuming task, subject to variability. State-of-the-art methods often employ convolutional neural networks for an automated approach. However, there is a lack of studies that perform these segmentations with 3D architectures that can gather important and necessary anatomical context to distinguish the different coronary arteries. This paper proposes a novel and automated approach that uses a lightweight three-dimensional convolutional neural network to perform efficient and accurate segmentations and calcium scoring. Results show that this method achieves Dice score coefficients of 0.93 ± 0.02, 0.93 ± 0.03, 0.84 ± 0.02, 0.63 ± 0.06 and 0.89 ± 0.03 for the foreground, left anterior descending artery (LAD), left circumflex artery (LCX), left main artery (LM) and right coronary artery (RCA) calcifications, respectively, outperforming other state-of-the-art architectures. An external cohort validation also showed the generalization of this method's performance and how it can be applied in different clinical scenarios. In conclusion, the proposed lightweight 3D convolutional neural network demonstrates high efficiency and accuracy, outperforming state-of-the-art methods and showcasing robust generalization potential.

A RF-based end-to-end Breast Cancer Prediction algorithm.

Win KN

pubmed logopapersAug 1 2025
Breast cancer became the primary cause of cancer-related deaths among women year by year. Early detection and accurate prediction of breast cancer play a crucial role in strengthening the quality of human life. Many scientists have concentrated on analyzing and conducting the development of many algorithms and progressing computer-aided diagnosis applications. Whereas many research have been conducted, feature research on cancer diagnosis is rare, especially regarding predicting the desired features by providing and feeding breast cancer features into the system. In this regard, this paper proposed a Breast Cancer Prediction (RF-BCP) algorithm based on Random Forest by taking inputs to predict cancer. For the experiment of the proposed algorithm, two datasets were utilized namely Breast Cancer dataset and a curated mammography dataset, and also compared the accuracy of the proposed algorithm with SVM, Gaussian NB, and KNN algorithms. Experimental results show that the proposed algorithm can predict well and outperform other existing machine learning algorithms to support decision-making.

Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic

Liu Li, Qiang Ma, Cheng Ouyang, Johannes C. Paetzold, Daniel Rueckert, Bernhard Kainz

arxiv logopreprintJul 31 2025
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($\chi$). First, we propose a fast formulation for $\chi$ computation in both 2D and 3D. The scalar $\chi$ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with $\chi$ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.

Interpreting convolutional neural network explainability for head-and-neck cancer radiotherapy organ-at-risk segmentation

Strijbis, V. I. J., Gurney-Champion, O. J., Grama, D. I., Slotman, B. J., Verbakel, W. F. A. R.

medrxiv logopreprintJul 31 2025
BackgroundConvolutional neural networks (CNNs) have emerged to reduce clinical resources and standardize auto-contouring of organs-at-risk (OARs). Although CNNs perform adequately for most patients, understanding when the CNN might fail is critical for effective and safe clinical deployment. However, the limitations of CNNs are poorly understood because of their black-box nature. Explainable artificial intelligence (XAI) can expose CNNs inner mechanisms for classification. Here, we investigate the inner mechanisms of CNNs for segmentation and explore a novel, computational approach to a-priori flag potentially insufficient parotid gland (PG) contours. MethodsFirst, 3D UNets were trained in three PG segmentation situations using (1) synthetic cases; (2) 1925 clinical computed tomography (CT) scans with typical and (3) more consistent contours curated through a previously validated auto-curation step. Then, we generated attribution maps for seven XAI methods, and qualitatively assessed them for congruency between simulated and clinical contours, and how much XAI agreed with expert reasoning. To objectify observations, we explored persistent homology intensity filtrations to capture essential topological characteristics of XAI attributions. Principal component (PC) eigenvalues of Euler characteristic profiles were correlated with spatial agreement (Dice-Sorensen similarity coefficient; DSC). Evaluation was done using sensitivity, specificity and the area under receiver operating characteristic (AUROC) curve on an external AAPM dataset, where as proof-of-principle, we regard the lowest 15% DSC as insufficient. ResultsPatternNet attributions (PNet-A) focused on soft-tissue structures, whereas guided backpropagation (GBP) highlighted both soft-tissue and high-density structures (e.g. mandible bone), which was congruent with synthetic situations. Both methods typically had higher/denser activations in better auto-contoured medial and anterior lobes. Curated models produced "cleaner" gradient class-activation mapping (GCAM) attributions. Quantitative analysis showed that PC{lambda}1 of guided GCAMs (GGCAM) Euler characteristic (EC) profile had good predictive value (sensitivity>0.85, specificity>0.9) of DSC for AAPM cases, with AUROC=0.66, 0.74, 0.94, 0.83 for GBP, GCAM, GGCAM and PNet-A. For for {lambda}1<-1.8e3 of GGCAMs EC-profile, 87% of cases were insufficient. ConclusionsGBP and PNet-A qualitatively agreed most with expert reasoning on directly (structure borders) and indirectly (proxies used for identifying structure borders) important features for PG segmentation. Additionally, this work investigated as proof-of-principle how topological data analysis could possibly be used for quantitative XAI signal analysis to a-priori mark potentially inadequate CNN-segmentations, using only features from inside the predicted PG. This work used PG as a well-understood segmentation paradigm and may extend to target volumes and other organs-at-risk.

External Validation of a Winning Artificial Intelligence Algorithm from the RSNA 2022 Cervical Spine Fracture Detection Challenge.

Harper JP, Lee GR, Pan I, Nguyen XV, Quails N, Prevedello LM

pubmed logopapersJul 31 2025
The Radiological Society of North America has actively promoted artificial intelligence (AI) challenges since 2017. Algorithms emerging from the recent RSNA 2022 Cervical Spine Fracture Detection Challenge demonstrated state-of-the-art performance in the competition's data set, surpassing results from prior publications. However, their performance in real-world clinical practice is not known. As an initial step toward the goal of assessing feasibility of these models in clinical practice, we conducted a generalizability test by using one of the leading algorithms of the competition. The deep learning algorithm was selected due to its performance, portability, and ease of use, and installed locally. One hundred examinations (50 consecutive cervical spine CT scans with at least 1 fracture present and 50 consecutive negative CT scans) from a level 1 trauma center not represented in the competition data set were processed at 6.4 seconds per examination. Ground truth was established based on the radiology report with retrospective confirmation of positive fracture cases. Sensitivity, specificity, F1 score, and area under the curve were calculated. The external validation data set comprised older patients in comparison to the competition set (53.5 ± 21.8 years versus 58 ± 22.0, respectively; <i>P</i> < .05). Sensitivity and specificity were 86% and 70% in the external validation group and 85% and 94% in the competition group, respectively. Fractures misclassified by the convolutional neural networks frequently had features of advanced degenerative disease, subtle nondisplaced fractures not easily identified on the axial plane, and malalignment. The model performed with a similar sensitivity on the test and external data set, suggesting that such a tool could be potentially generalizable as a triage tool in the emergency setting. Discordant factors such as age-associated comorbidities may affect accuracy and specificity of AI models when used in certain populations. Further research should be encouraged to help elucidate the potential contributions and pitfalls of these algorithms in supporting clinical care.

TA-SSM net: tri-directional attention and structured state-space model for enhanced MRI-Based diagnosis of Alzheimer's disease and mild cognitive impairment.

Bao S, Zheng F, Jiang L, Wang Q, Lyu Y

pubmed logopapersJul 31 2025
Early diagnosis of Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI), is critical for effective prevention and treatment. Computer-aided diagnosis using magnetic resonance imaging (MRI) provides a cost-effective and objective approach. However, existing methods often segment 3D MRI images into 2D slices, leading to spatial information loss and reduced diagnostic accuracy. To overcome this limitation, we propose TA-SSM Net, a deep learning model that leverages tri-directional attention and structured state-space model (SSM) for improved MRI-based diagnosis of AD and MCI. The tri-directional attention mechanism captures spatial and contextual information from forward, backward, and vertical directions in 3D MRI images, enabling effective feature fusion. Additionally, gradient checkpointing is applied within the SSM to enhance processing efficiency, allowing the model to handle whole-brain scans while preserving spatial correlations. To evaluate our method, we construct a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI), consisting of 300 AD patients, 400 MCI patients, and 400 normal controls. TA-SSM Net achieved an accuracy of 90.24% for MCI detection and 95.83% for AD detection. The results demonstrate that our approach not only improves classification accuracy but also enhances processing efficiency and maintains spatial correlations, offering a promising solution for the diagnosis of Alzheimer's disease.

Advanced multi-label brain hemorrhage segmentation using an attention-based residual U-Net model.

Lin X, Zou E, Chen W, Chen X, Lin L

pubmed logopapersJul 31 2025
This study aimed to develop and assess an advanced Attention-Based Residual U-Net (ResUNet) model for accurately segmenting different types of brain hemorrhages from CT images. The goal was to overcome the limitations of manual segmentation and current automated methods regarding precision and generalizability. A dataset of 1,347 patient CT scans was collected retrospectively, covering six types of hemorrhages: subarachnoid hemorrhage (SAH, 231 cases), subdural hematoma (SDH, 198 cases), epidural hematoma (EDH, 236 cases), cerebral contusion (CC, 230 cases), intraventricular hemorrhage (IVH, 188 cases), and intracerebral hemorrhage (ICH, 264 cases). The dataset was divided into 80% for training using a 10-fold cross-validation approach and 20% for testing. All CT scans were standardized to a common anatomical space, and intensity normalization was applied for uniformity. The ResUNet model included attention mechanisms to enhance focus on important features and residual connections to support stable learning and efficient gradient flow. Model performance was assessed using the Dice Similarity Coefficient (DSC), Intersection over Union (IoU), and directed Hausdorff distance (dHD). The ResUNet model showed excellent performance during both training and testing. On training data, the model achieved DSC scores of 95 ± 1.2 for SAH, 94 ± 1.4 for SDH, 93 ± 1.5 for EDH, 91 ± 1.4 for CC, 89 ± 1.6 for IVH, and 93 ± 2.4 for ICH. IoU values ranged from 88 to 93, with dHD between 2.1- and 2.7-mm. Testing results confirmed strong generalization, with DSC scores of 93 for SAH, 93 for SDH, 92 for EDH, 90 for CC, 88 for IVH, and 92 for ICH. IoU values were also high, indicating precise segmentation and minimal boundary errors. The ResUNet model outperformed standard U-Net variants, achieving higher multi-label segmentation accuracy. This makes it a valuable tool for clinical applications that require fast and reliable brain hemorrhage analysis. Future research could investigate semi-supervised techniques and 3D segmentation to further enhance clinical use. Not applicable.

A successive framework for brain tumor interpretation using Yolo variants.

Priyadharshini S, Bhoopalan R, Manikandan D, Ramaswamy K

pubmed logopapersJul 31 2025
Accurate identification and segmentation of brain tumors in Magnetic Resonance Imaging (MRI) images are critical for timely diagnosis and treatment. MRI is frequently used to diagnose these disorders; however medical professionals find it challenging to manually evaluate MRI pictures because of time restrictions and unpredictability. Computerized methods such as R-CNN, attention models and earlier YOLO variants face limitations due to high computational demands and suboptimal segmentation performance. To overcome these limitations, this study proposes a successive framework that evaluates YOLOv9, YOLOv10, and YOLOv11 for tumor detection and segmentation using the Figshare Brain Tumor dataset (2100 images) and BraTS2020 dataset (3170 MRI slices). Preprocessing involves log transformation for intensity normalization, histogram equalization for contrast enhancement, and edge-based ROI extraction. The models were trained on 80% of the combined dataset and evaluated on the remaining 20%. YOLOv11 demonstrated superior performance, achieving 96.22% classification accuracy on BraTS2020 and 96.41% on Figshare, with an F1-score of 0.990, recall of 0.984, [email protected] of 0.993, and mAP@ [0.5:0.95] of 0.801 during testing. With a fast inference time of 5.3 ms and a balanced precision-recall profile, YOLOv11 proves to be a robust, real-time solution for brain tumor detection in clinical applications.

An interpretable CT-based machine learning model for predicting recurrence risk in stage II colorectal cancer.

Wu Z, Gong L, Luo J, Chen X, Yang F, Wen J, Hao Y, Wang Z, Gu R, Zhang Y, Liao H, Wen G

pubmed logopapersJul 31 2025
This study aimed to develop an interpretable 3-year disease-free survival risk prediction tool to stratify patients with stage II colorectal cancer (CRC) by integrating CT images and clinicopathological factors. A total of 769 patients with pathologically confirmed stage II CRC and disease-free survival (DFS) follow-up information were recruited from three medical centers and divided into training (n = 442), test (n = 190), and validation cohorts (n = 137). CT-based tumor radiomics features were extracted, selected, and used to calculate a Radscore. A combined model was developed using artificial neural network (ANN) algorithm, by integrating the Radscore with significant clinicoradiological factors to classify patients into high- and low-risk groups. Model performance was assessed using the area under the curve (AUC), and feature contributions were qualified using the Shapley additive explanation (SHAP) algorithm. Kaplan-Meier survival analysis revealed the prognostic stratification value of the risk groups. Fourteen radiomics features and five clinicoradiological factors were selected to construct the radiomics and clinicoradiological models, respectively. The combined model demonstrated optimal performance, with AUCs of 0.811 and 0.846 in the test and validation cohorts, respectively. Kaplan-Meier curves confirmed effective patient stratification (p < 0.001) in both test and validation cohorts. A high Radscore, rough intestinal outer edge, and advanced age were identified as key prognostic risk factors using the SHAP. The combined model effectively stratified patients with stage II CRC into different prognostic risk groups, aiding clinical decision-making. Integrating CT images with clinicopathological information can facilitate the identification of patients with stage II CRC who are most likely to benefit from adjuvant chemotherapy. The effectiveness of adjuvant chemotherapy for stage II colorectal cancer remains debated. A combined model successfully identified high-risk stage II colorectal cancer patients. Shapley additive explanations enhance the interpretability of the model's predictions.

Enhanced stroke risk prediction in hypertensive patients through deep learning integration of imaging and clinical data.

Li H, Zhang T, Han G, Huang Z, Xiao H, Ni Y, Liu B, Lin W, Lin Y

pubmed logopapersJul 31 2025
Stroke is one of the leading causes of death and disability worldwide, with a significantly elevated incidence among individuals with hypertension. Conventional risk assessment methods primarily rely on a limited set of clinical parameters and often exclude imaging-derived structural features, resulting in suboptimal predictive accuracy. This study aimed to develop a deep learning-based multimodal stroke risk prediction model by integrating carotid ultrasound imaging with multidimensional clinical data to enable precise identification of high-risk individuals among hypertensive patients. A total of 2,176 carotid artery ultrasound images from 1,088 hypertensive patients were collected. ResNet50 was employed to automatically segment the carotid intima-media and extract key structural features. These imaging features, along with clinical variables such as age, blood pressure, and smoking history, were fused using a Vision Transformer (ViT) and fed into a Radial Basis Probabilistic Neural Network (RBPNN) for risk stratification. The model's performance was systematically evaluated using metrics including AUC, Dice coefficient, IoU, and Precision-Recall curves. The proposed multimodal fusion model achieved outstanding performance on the test set, with an AUC of 0.97, a Dice coefficient of 0.90, and an IoU of 0.80. Ablation studies demonstrated that the inclusion of ViT and RBPNN modules significantly enhanced predictive accuracy. Subgroup analysis further confirmed the model's robust performance in high-risk populations, such as those with diabetes or smoking history. The deep learning-based multimodal fusion model effectively integrates carotid ultrasound imaging and clinical features, significantly improving the accuracy of stroke risk prediction in hypertensive patients. The model demonstrates strong generalizability and clinical application potential, offering a valuable tool for early screening and personalized intervention planning for stroke prevention. Not applicable.
Page 90 of 3773763 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.