Sort by:
Page 9 of 19185 results

PROTEUS: A Physically Realistic Contrast-Enhanced Ultrasound Simulator-Part I: Numerical Methods.

Blanken N, Heiles B, Kuliesh A, Versluis M, Jain K, Maresca D, Lajoinie G

pubmed logopapersJul 1 2025
Ultrasound contrast agents (UCAs) have been used as vascular reporters for the past 40 years. The ability to enhance vascular features in ultrasound images with engineered lipid-shelled microbubbles has enabled breakthroughs such as the detection of tissue perfusion or super-resolution imaging of the microvasculature. However, advances in the field of contrast-enhanced ultrasound are hindered by experimental variables that are difficult to control in a laboratory setting, such as complex vascular geometries, the lack of ground truth, and tissue nonlinearities. In addition, the demand for large datasets to train deep learning-based computational ultrasound imaging methods calls for the development of a simulation tool that can reproduce the physics of ultrasound wave interactions with tissues and microbubbles. Here, we introduce a physically realistic contrast-enhanced ultrasound simulator (PROTEUS) consisting of four interconnected modules that account for blood flow dynamics in segmented vascular geometries, intravascular microbubble trajectories, ultrasound wave propagation, and nonlinear microbubble scattering. The first part of this study describes the numerical methods that enabled this development. We demonstrate that PROTEUS can generate contrast-enhanced radio-frequency (RF) data in various vascular architectures across the range of medical ultrasound frequencies. PROTEUS offers a customizable framework to explore novel ideas in the field of contrast-enhanced ultrasound imaging. It is released as an open-source tool for the scientific community.

Automated quantification of brain PET in PET/CT using deep learning-based CT-to-MR translation: a feasibility study.

Kim D, Choo K, Lee S, Kang S, Yun M, Yang J

pubmed logopapersJul 1 2025
Quantitative analysis of PET images in brain PET/CT relies on MRI-derived regions of interest (ROIs). However, the pairs of PET/CT and MR images are not always available, and their alignment is challenging if their acquisition times differ considerably. To address these problems, this study proposes a deep learning framework for translating CT of PET/CT to synthetic MR images (MR<sub>SYN</sub>) and performing automated quantitative regional analysis using MR<sub>SYN</sub>-derived segmentation. In this retrospective study, 139 subjects who underwent brain [<sup>18</sup>F]FBB PET/CT and T1-weighted MRI were included. A U-Net-like model was trained to translate CT images to MR<sub>SYN</sub>; subsequently, a separate model was trained to segment MR<sub>SYN</sub> into 95 regions. Regional and composite standardised uptake value ratio (SUVr) was calculated in [<sup>18</sup>F]FBB PET images using the acquired ROIs. For evaluation of MR<sub>SYN</sub>, quantitative measurements including structural similarity index measure (SSIM) were employed, while for MR<sub>SYN</sub>-based segmentation evaluation, Dice similarity coefficient (DSC) was calculated. Wilcoxon signed-rank test was performed for SUVrs computed using MR<sub>SYN</sub> and ground-truth MR (MR<sub>GT</sub>). Compared to MR<sub>GT</sub>, the mean SSIM of MR<sub>SYN</sub> was 0.974 ± 0.005. The MR<sub>SYN</sub>-based segmentation achieved a mean DSC of 0.733 across 95 regions. No statistical significance (P > 0.05) was found for SUVr between the ROIs from MR<sub>SYN</sub> and those from MR<sub>GT</sub>, excluding the precuneus. We demonstrated a deep learning framework for automated regional brain analysis in PET/CT with MR<sub>SYN</sub>. Our proposed framework can benefit patients who have difficulties in performing an MRI scan.

Unsupervised Cardiac Video Translation Via Motion Feature Guided Diffusion Model

Swakshar Deb, Nian Wu, Frederick H. Epstein, Miaomiao Zhang

arxiv logopreprintJul 1 2025
This paper presents a novel motion feature guided diffusion model for unpaired video-to-video translation (MFD-V2V), designed to synthesize dynamic, high-contrast cine cardiac magnetic resonance (CMR) from lower-contrast, artifact-prone displacement encoding with stimulated echoes (DENSE) CMR sequences. To achieve this, we first introduce a Latent Temporal Multi-Attention (LTMA) registration network that effectively learns more accurate and consistent cardiac motions from cine CMR image videos. A multi-level motion feature guided diffusion model, equipped with a specialized Spatio-Temporal Motion Encoder (STME) to extract fine-grained motion conditioning, is then developed to improve synthesis quality and fidelity. We evaluate our method, MFD-V2V, on a comprehensive cardiac dataset, demonstrating superior performance over the state-of-the-art in both quantitative metrics and qualitative assessments. Furthermore, we show the benefits of our synthesized cine CMRs improving downstream clinical and analytical tasks, underscoring the broader impact of our approach. Our code is publicly available at https://github.com/SwaksharDeb/MFD-V2V.

Denoising Diffusion Probabilistic Model to Simulate Contrast-enhanced spinal MRI of Spinal Tumors: A Multi-Center Study.

Wang C, Zhang S, Xu J, Wang H, Wang Q, Zhu Y, Xing X, Hao D, Lang N

pubmed logopapersJul 1 2025
To generate virtual T1 contrast-enhanced (T1CE) sequences from plain spinal MRI sequences using the denoising diffusion probabilistic model (DDPM) and to compare its performance against one baseline model pix2pix and three advanced models. A total of 1195 consecutive spinal tumor patients who underwent contrast-enhanced MRI at two hospitals were divided into a training set (n = 809, 49 ± 17 years, 437 men), an internal test set (n = 203, 50 ± 16 years, 105 men), and an external test set (n = 183, 52 ± 16 years, 94 men). Input sequences were T1- and T2-weighted images, and T2 fat-saturation images. The output was T1CE images. In the test set, one radiologist read the virtual images and marked all visible enhancing lesions. Results were evaluated using sensitivity (SE) and false discovery rate (FDR). We compared differences in lesion size and enhancement degree between reference and virtual images, and calculated signal-to-noise (SNR) and contrast-to-noise ratios (CNR) for image quality assessment. In the external test set, the mean squared error was 0.0038±0.0065, and structural similarity index 0.78±0.10. Upon evaluation by the reader, the overall SE of the generated T1CE images was 94% with FDR 2%. There was no difference in lesion size or signal intensity ratio between the reference and generated images. The CNR was higher in the generated images than the reference images (9.241 vs. 4.021; P<0.001). The proposed DDPM demonstrates potential as an alternative to gadolinium contrast in spinal MRI examinations of oncologic patients.

Generative Artificial Intelligence in Prostate Cancer Imaging.

Haque F, Simon BD, Özyörük KB, Harmon SA, Türkbey B

pubmed logopapersJul 1 2025
Prostate cancer (PCa) is the second most common cancer in men and has a significant health and social burden, necessitating advances in early detection, prognosis, and treatment strategies. Improvement in medical imaging has significantly impacted early PCa detection, characterization, and treatment planning. However, with an increasing number of patients with PCa and comparatively fewer PCa imaging experts, interpreting large numbers of imaging data is burdensome, time-consuming, and prone to variability among experts. With the revolutionary advances of artificial intelligence (AI) in medical imaging, image interpretation tasks are becoming easier and exhibit the potential to reduce the workload on physicians. Generative AI (GenAI) is a recently popular sub-domain of AI that creates new data instances, often to resemble patterns and characteristics of the real data. This new field of AI has shown significant potential for generating synthetic medical images with diverse and clinically relevant information. In this narrative review, we discuss the basic concepts of GenAI and cover the recent application of GenAI in the PCa imaging domain. This review will help the readers understand where the PCa research community stands in terms of various medical image applications like generating multi-modal synthetic images, image quality improvement, PCa detection, classification, and digital pathology image generation. We also address the current safety concerns, limitations, and challenges of GenAI for technical and clinical adaptation, as well as the limitations of current literature, potential solutions, and future directions with GenAI for the PCa community.

Multi-label pathology editing of chest X-rays with a Controlled Diffusion Model.

Chu H, Qi X, Wang H, Liang Y

pubmed logopapersJul 1 2025
Large-scale generative models have garnered significant attention in the field of medical imaging, particularly for image editing utilizing diffusion models. However, current research has predominantly concentrated on pathological editing involving single or a limited number of labels, making it challenging to achieve precise modifications. Inaccurate alterations may lead to substantial discrepancies between the generated and original images, thereby impacting the clinical applicability of these models. This paper presents a diffusion model with untangling capabilities applied to chest X-ray image editing, incorporating a mask-based mechanism for bone and organ information. We successfully perform multi-label pathological editing of chest X-ray images without compromising the integrity of the original thoracic structure. The proposed technology comprises a chest X-ray image classifier and an intricate organ mask; the classifier supplies essential feature labels that require untangling for the stabilized diffusion model, while the complex organ mask facilitates directed and controllable edits to chest X-rays. We assessed the outcomes of our proposed algorithm, named Chest X-rays_Mpe, using MS-SSIM and CLIP scores alongside qualitative evaluations conducted by radiology experts. The results indicate that our approach surpasses existing algorithms across both quantitative and qualitative metrics.

Multi-modal MRI synthesis with conditional latent diffusion models for data augmentation in tumor segmentation.

Kebaili A, Lapuyade-Lahorgue J, Vera P, Ruan S

pubmed logopapersJul 1 2025
Multimodality is often necessary for improving object segmentation tasks, especially in the case of multilabel tasks, such as tumor segmentation, which is crucial for clinical diagnosis and treatment planning. However, a major challenge in utilizing multimodality with deep learning remains: the limited availability of annotated training data, primarily due to the time-consuming acquisition process and the necessity for expert annotations. Although deep learning has significantly advanced many tasks in medical imaging, conventional augmentation techniques are often insufficient due to the inherent complexity of volumetric medical data. To address this problem, we propose an innovative slice-based latent diffusion architecture for the generation of 3D multi-modal images and their corresponding multi-label masks. Our approach enables the simultaneous generation of the image and mask in a slice-by-slice fashion, leveraging a positional encoding and a Latent Aggregation module to maintain spatial coherence and capture slice sequentiality. This method effectively reduces the computational complexity and memory demands typically associated with diffusion models. Additionally, we condition our architecture on tumor characteristics to generate a diverse array of tumor variations and enhance texture using a refining module that acts like a super-resolution mechanism, mitigating the inherent blurriness caused by data scarcity in the autoencoder. We evaluate the effectiveness of our synthesized volumes using the BRATS2021 dataset to segment the tumor with three tissue labels and compare them with other state-of-the-art diffusion models through a downstream segmentation task, demonstrating the superior performance and efficiency of our method. While our primary application is tumor segmentation, this method can be readily adapted to other modalities. Code is available here : https://github.com/Arksyd96/multi-modal-mri-and-mask-synthesis-with-conditional-slice-based-ldm.

Unsupervised Cardiac Video Translation Via Motion Feature Guided Diffusion Model

Swakshar Deb, Nian Wu, Frederick H. Epstein, Miaomiao Zhang

arxiv logopreprintJul 1 2025
This paper presents a novel motion feature guided diffusion model for unpaired video-to-video translation (MFD-V2V), designed to synthesize dynamic, high-contrast cine cardiac magnetic resonance (CMR) from lower-contrast, artifact-prone displacement encoding with stimulated echoes (DENSE) CMR sequences. To achieve this, we first introduce a Latent Temporal Multi-Attention (LTMA) registration network that effectively learns more accurate and consistent cardiac motions from cine CMR image videos. A multi-level motion feature guided diffusion model, equipped with a specialized Spatio-Temporal Motion Encoder (STME) to extract fine-grained motion conditioning, is then developed to improve synthesis quality and fidelity. We evaluate our method, MFD-V2V, on a comprehensive cardiac dataset, demonstrating superior performance over the state-of-the-art in both quantitative metrics and qualitative assessments. Furthermore, we show the benefits of our synthesized cine CMRs improving downstream clinical and analytical tasks, underscoring the broader impact of our approach. Our code is publicly available at https://github.com/SwaksharDeb/MFD-V2V.

Diffusion-driven multi-modality medical image fusion.

Qu J, Huang D, Shi Y, Liu J, Tang W

pubmed logopapersJul 1 2025
Multi-modality medical image fusion (MMIF) technology utilizes the complementarity of different modalities to provide more comprehensive diagnostic insights for clinical practice. Existing deep learning-based methods often focus on extracting the primary information from individual modalities while ignoring the correlation of information distribution across different modalities, which leads to insufficient fusion of image details and color information. To address this problem, a diffusion-driven MMIF method is proposed to leverage the information distribution relationship among multi-modality images in the latent space. To better preserve the complementary information from different modalities, a local and global network (LAGN) is suggested. Additionally, a loss strategy is designed to establish robust constraints among diffusion-generated images, original images, and fused images. This strategy supervises the training process and prevents information loss in fused images. The experimental results demonstrate that the proposed method surpasses state-of-the-art image fusion methods in terms of unsupervised metrics on three datasets: MRI/CT, MRI/PET, and MRI/SPECT images. The proposed method successfully captures rich details and color information. Furthermore, 16 doctors and medical students were invited to evaluate the effectiveness of our method in assisting clinical diagnosis and treatment.

Deep Learning Estimation of Small Airway Disease from Inspiratory Chest Computed Tomography: Clinical Validation, Repeatability, and Associations with Adverse Clinical Outcomes in Chronic Obstructive Pulmonary Disease.

Chaudhary MFA, Awan HA, Gerard SE, Bodduluri S, Comellas AP, Barjaktarevic IZ, Barr RG, Cooper CB, Galban CJ, Han MK, Curtis JL, Hansel NN, Krishnan JA, Menchaca MG, Martinez FJ, Ohar J, Vargas Buonfiglio LG, Paine R, Bhatt SP, Hoffman EA, Reinhardt JM

pubmed logopapersJul 1 2025
<b>Rationale:</b> Quantifying functional small airway disease (fSAD) requires additional expiratory computed tomography (CT) scans, limiting clinical applicability. Artificial intelligence (AI) could enable fSAD quantification from chest CT scans at total lung capacity (TLC) alone (fSAD<sup>TLC</sup>). <b>Objectives:</b> To evaluate an AI model for estimating fSAD<sup>TLC</sup>, compare it with dual-volume parametric response mapping fSAD (fSAD<sup>PRM</sup>), and assess its clinical associations and repeatability in chronic obstructive pulmonary disease (COPD). <b>Methods:</b> We analyzed 2,513 participants from SPIROMICS (the Subpopulations and Intermediate Outcome Measures in COPD Study). Using a randomly sampled subset (<i>n</i> = 1,055), we developed a generative model to produce virtual expiratory CT scans for estimating fSAD<sup>TLC</sup> in the remaining 1,458 SPIROMICS participants. We compared fSAD<sup>TLC</sup> with dual-volume fSAD<sup>PRM</sup>. We investigated univariate and multivariable associations of fSAD<sup>TLC</sup> with FEV<sub>1</sub>, FEV<sub>1</sub>/FVC ratio, 6-minute-walk distance, St. George's Respiratory Questionnaire score, and FEV<sub>1</sub> decline. The results were validated in a subset of patients from the COPDGene (Genetic Epidemiology of COPD) study (<i>n</i> = 458). Multivariable models were adjusted for age, race, sex, body mass index, baseline FEV<sub>1</sub>, smoking pack-years, smoking status, and percent emphysema. <b>Measurements and Main Results:</b> Inspiratory fSAD<sup>TLC</sup> showed a strong correlation with fSAD<sup>PRM</sup> in SPIROMICS (Pearson's <i>R</i> = 0.895) and COPDGene (<i>R</i> = 0.897) cohorts. Higher fSAD<sup>TLC</sup> levels were significantly associated with lower lung function, including lower postbronchodilator FEV<sub>1</sub> (in liters) and FEV<sub>1</sub>/FVC ratio, and poorer quality of life reflected by higher total St. George's Respiratory Questionnaire scores independent of percent CT emphysema. In SPIROMICS, individuals with higher fSAD<sup>TLC</sup> experienced an annual decline in FEV<sub>1</sub> of 1.156 ml (relative decrease; 95% confidence interval [CI], 0.613-1.699; <i>P</i> < 0.001) per year for every 1% increase in fSAD<sup>TLC</sup>. The rate of decline in the COPDGene cohort was slightly lower at 0.866 ml/yr (relative decrease; 95% CI, 0.345-1.386; <i>P</i> < 0.001) per 1% increase in fSAD<sup>TLC</sup>. Inspiratory fSAD<sup>TLC</sup> demonstrated greater consistency between repeated measurements, with a higher intraclass correlation coefficient of 0.99 (95% CI, 0.98-0.99) compared with fSAD<sup>PRM</sup> (0.83; 95% CI, 0.76-0.88). <b>Conclusions:</b> Small airway disease can be reliably assessed from a single inspiratory CT scan using generative AI, eliminating the need for an additional expiratory CT scan. fSAD estimation from inspiratory CT correlates strongly with fSAD<sup>PRM</sup>, demonstrates a significant association with FEV<sub>1</sub> decline, and offers greater repeatability.
Page 9 of 19185 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.