Sort by:
Page 9 of 18173 results

Kellgren-Lawrence grading of knee osteoarthritis using deep learning: Diagnostic performance with external dataset and comparison with four readers.

Vaattovaara E, Panfilov E, Tiulpin A, Niinimäki T, Niinimäki J, Saarakkala S, Nevalainen MT

pubmed logopapersJun 1 2025
To evaluate the performance of a deep learning (DL) model in an external dataset to assess radiographic knee osteoarthritis using Kellgren-Lawrence (KL) grades against versatile human readers. Two-hundred-eight knee anteroposterior conventional radiographs (CRs) were included in this retrospective study. Four readers (three radiologists, one orthopedic surgeon) assessed the KL grades and consensus grade was derived as the mean of these. The DL model was trained using all the CRs from Multicenter Osteoarthritis Study (MOST) and validated on Osteoarthritis Initiative (OAI) dataset and then tested on our external dataset. To assess the agreement between the graders, Cohen's quadratic kappa (k) with 95 ​% confidence intervals were used. Diagnostic performance was measured using confusion matrices and receiver operating characteristic (ROC) analyses. The multiclass (KL grades from 0 to 4) diagnostic performance of the DL model was multifaceted: sensitivities were between 0.372 and 1.000, specificities 0.691-0.974, PPVs 0.227-0.879, NPVs 0.622-1.000, and AUCs 0.786-0.983. The overall balanced accuracy was 0.693, AUC 0.886, and kappa 0.820. If only dichotomous KL grading (i.e. KL0-1 vs. KL2-4) was utilized, superior metrics were seen with an overall balanced accuracy of 0.902 and AUC of 0.967. A substantial agreement between each reader and DL model was found: the inter-rater agreement was 0.737 [0.685-0.790] for the radiology resident, 0.761 [0.707-0.816] for the musculoskeletal radiology fellow, 0.802 [0.761-0.843] for the senior musculoskeletal radiologist, and 0.818 [0.775-0.860] for the orthopedic surgeon. In an external dataset, our DL model can grade knee osteoarthritis with diagnostic accuracy comparable to highly experienced human readers.

Evaluating artificial intelligence chatbots for patient education in oral and maxillofacial radiology.

Helvacioglu-Yigit D, Demirturk H, Ali K, Tamimi D, Koenig L, Almashraqi A

pubmed logopapersJun 1 2025
This study aimed to compare the quality and readability of the responses generated by 3 publicly available artificial intelligence (AI) chatbots in answering frequently asked questions (FAQs) related to Oral and Maxillofacial Radiology (OMR) to assess their suitability for patient education. Fifteen OMR-related questions were selected from professional patient information websites. These questions were posed to ChatGPT-3.5 by OpenAI, Gemini 1.5 Pro by Google, and Copilot by Microsoft to generate responses. Three board-certified OMR specialists evaluated the responses regarding scientific adequacy, ease of understanding, and overall reader satisfaction. Readability was assessed using the Flesch-Kincaid Grade Level (FKGL) and Flesch Reading Ease (FRE) scores. The Wilcoxon signed-rank test was conducted to compare the scores assigned by the evaluators to the responses from the chatbots and professional websites. Interevaluator agreement was examined by calculating the Fleiss kappa coefficient. There were no significant differences between groups in terms of scientific adequacy. In terms of readability, chatbots had overall mean FKGL and FRE scores of 12.97 and 34.11, respectively. Interevaluator agreement level was generally high. Although chatbots are relatively good at responding to FAQs, validating AI-generated information using input from healthcare professionals can enhance patient care and safety. Readability of the text content in the chatbots and websites requires high reading levels.

Retaking assessment system based on the inspiratory state of chest X-ray image.

Matsubara N, Teramoto A, Takei M, Kitoh Y, Kawakami S

pubmed logopapersJun 1 2025
When taking chest X-rays, the patient is encouraged to take maximum inspiration and the radiological technologist takes the images at the appropriate time. If the image is not taken at maximum inspiration, retaking of the image is required. However, there is variation in the judgment of whether retaking is necessary between the operators. Therefore, we considered that it might be possible to reduce variation in judgment by developing a retaking assessment system that evaluates whether retaking is necessary using a convolutional neural network (CNN). To train the CNN, the input chest X-ray image and the corresponding correct label indicating whether retaking is necessary are required. However, chest X-ray images cannot distinguish whether inspiration is sufficient and does not need to be retaken, or insufficient and retaking is required. Therefore, we generated input images and labels from dynamic digital radiography (DDR) and conducted the training. Verification using 18 dynamic chest X-ray cases (5400 images) and 48 actual chest X-ray cases (96 images) showed that the VGG16-based architecture achieved an assessment accuracy of 82.3% even for actual chest X-ray images. Therefore, if the proposed method is used in hospitals, it could possibly reduce the variability in judgment between operators.

Applying Deep-Learning Algorithm Interpreting Kidney, Ureter, and Bladder (KUB) X-Rays to Detect Colon Cancer.

Lee L, Lin C, Hsu CJ, Lin HH, Lin TC, Liu YH, Hu JM

pubmed logopapersJun 1 2025
Early screening is crucial in reducing the mortality of colorectal cancer (CRC). Current screening methods, including fecal occult blood tests (FOBT) and colonoscopy, are primarily limited by low patient compliance and the invasive nature of the procedures. Several advanced imaging techniques such as computed tomography (CT) and histological imaging have been integrated with artificial intelligence (AI) to enhance the detection of CRC. There are still limitations because of the challenges associated with image acquisition and the cost. Kidney, ureter, and bladder (KUB) radiograph which is inexpensive and widely used for abdominal assessments in emergency settings and shows potential for detecting CRC when enhanced using advanced techniques. This study aimed to develop a deep learning model (DLM) to detect CRC using KUB radiographs. This retrospective study was conducted using data from the Tri-Service General Hospital (TSGH) between January 2011 and December 2020, including patients with at least one KUB radiograph. Patients were divided into development (n = 28,055), tuning (n = 11,234), and internal validation (n = 16,875) sets. An additional 15,876 patients were collected from a community hospital as the external validation set. A 121-layer DenseNet convolutional network was trained to classify KUB images for CRC detection. The model performance was evaluated using receiver operating characteristic curves, with sensitivity, specificity, and area under the curve (AUC) as metrics. The AUC, sensitivity, and specificity of the DLM in the internal and external validation sets achieved 0.738, 61.3%, and 74.4%, as well as 0.656, 47.7%, and 72.9%, respectively. The model performed better for high-grade CRC, with AUCs of 0.744 and 0.674 in the internal and external sets, respectively. Stratified analysis showed superior performance in females aged 55-64 with high-grade cancers. AI-positive predictions were associated with a higher long-term risk of all-cause mortality in both validation cohorts. AI-enhanced KUB X-ray analysis can enhance CRC screening coverage and effectiveness, providing a cost-effective alternative to traditional methods. Further prospective studies are necessary to validate these findings and fully integrate this technology into clinical practice.

Deep Learning-Based Estimation of Radiographic Position to Automatically Set Up the X-Ray Prime Factors.

Del Cerro CF, Giménez RC, García-Blas J, Sosenko K, Ortega JM, Desco M, Abella M

pubmed logopapersJun 1 2025
Radiation dose and image quality in radiology are influenced by the X-ray prime factors: KVp, mAs, and source-detector distance. These parameters are set by the X-ray technician prior to the acquisition considering the radiographic position. A wrong setting of these parameters may result in exposure errors, forcing the test to be repeated with the increase of the radiation dose delivered to the patient. This work presents a novel approach based on deep learning that automatically estimates the radiographic position from a photograph captured prior to X-ray exposure, which can then be used to select the optimal prime factors. We created a database using 66 radiographic positions commonly used in clinical settings, prospectively obtained during 2022 from 75 volunteers in two different X-ray facilities. The architecture for radiographic position classification was a lightweight version of ConvNeXt trained with fine-tuning, discriminative learning rates, and a one-cycle policy scheduler. Our resulting model achieved an accuracy of 93.17% for radiographic position classification and increased to 95.58% when considering the correct selection of prime factors, since half of the errors involved positions with the same KVp and mAs values. Most errors occurred for radiographic positions with similar patient pose in the photograph. Results suggest the feasibility of the method to facilitate the acquisition workflow reducing the occurrence of exposure errors while preventing unnecessary radiation dose delivered to patients.

Integrating VAI-Assisted Quantified CXRs and Multimodal Data to Assess the Risk of Mortality.

Chen YC, Fang WH, Lin CS, Tsai DJ, Hsiang CW, Chang CK, Ko KH, Huang GS, Lee YT, Lin C

pubmed logopapersJun 1 2025
To address the unmet need for a widely available examination for mortality prediction, this study developed a foundation visual artificial intelligence (VAI) to enhance mortality risk stratification using chest X-rays (CXRs). The VAI employed deep learning to extract CXR features and a Cox proportional hazard model to generate a hazard score ("CXR-risk"). We retrospectively collected CXRs from patients visited outpatient department and physical examination center. Subsequently, we reviewed mortality and morbidity outcomes from electronic medical records. The dataset consisted of 41,945, 10,492, 31,707, and 4441 patients in the training, validation, internal test, and external test sets, respectively. During the median follow-up of 3.2 (IQR, 1.2-6.1) years of both internal and external test sets, the "CXR-risk" demonstrated C-indexes of 0.859 (95% confidence interval (CI), 0.851-0.867) and 0.870 (95% CI, 0.844-0.896), respectively. Patients with high "CXR-risk," above 85th percentile, had a significantly higher risk of mortality than those with low risk, below 50th percentile. The addition of clinical and laboratory data and radiographic report further improved the predictive accuracy, resulting in C-indexes of 0.888 and 0.900. The VAI can provide accurate predictions of mortality and morbidity outcomes using just a single CXR, and it can complement other risk prediction indicators to assist physicians in assessing patient risk more effectively.

Bridging innovation to implementation in artificial intelligence fracture detection : a commentary piece.

Khattak M, Kierkegaard P, McGregor A, Perry DC

pubmed logopapersJun 1 2025
The deployment of AI in medical imaging, particularly in areas such as fracture detection, represents a transformative advancement in orthopaedic care. AI-driven systems, leveraging deep-learning algorithms, promise to enhance diagnostic accuracy, reduce variability, and streamline workflows by analyzing radiograph images swiftly and accurately. Despite these potential benefits, the integration of AI into clinical settings faces substantial barriers, including slow adoption across health systems, technical challenges, and a major lag between technology development and clinical implementation. This commentary explores the role of AI in healthcare, highlighting its potential to enhance patient outcomes through more accurate and timely diagnoses. It addresses the necessity of bridging the gap between AI innovation and practical application. It also emphasizes the importance of implementation science in effectively integrating AI technologies into healthcare systems, using frameworks such as the Consolidated Framework for Implementation Research and the Knowledge-to-Action Cycle to guide this process. We call for a structured approach to address the challenges of deploying AI in clinical settings, ensuring that AI's benefits translate into improved healthcare delivery and patient care.

Development and External Validation of a Detection Model to Retrospectively Identify Patients With Acute Respiratory Distress Syndrome.

Levy E, Claar D, Co I, Fuchs BD, Ginestra J, Kohn R, McSparron JI, Patel B, Weissman GE, Kerlin MP, Sjoding MW

pubmed logopapersJun 1 2025
The aim of this study was to develop and externally validate a machine-learning model that retrospectively identifies patients with acute respiratory distress syndrome (acute respiratory distress syndrome [ARDS]) using electronic health record (EHR) data. In this retrospective cohort study, ARDS was identified via physician-adjudication in three cohorts of patients with hypoxemic respiratory failure (training, internal validation, and external validation). Machine-learning models were trained to classify ARDS using vital signs, respiratory support, laboratory data, medications, chest radiology reports, and clinical notes. The best-performing models were assessed and internally and externally validated using the area under receiver-operating curve (AUROC), area under precision-recall curve, integrated calibration index (ICI), sensitivity, specificity, positive predictive value (PPV), and ARDS timing. Patients with hypoxemic respiratory failure undergoing mechanical ventilation within two distinct health systems. None. There were 1,845 patients in the training cohort, 556 in the internal validation cohort, and 199 in the external validation cohort. ARDS prevalence was 19%, 17%, and 31%, respectively. Regularized logistic regression models analyzing structured data (EHR model) and structured data and radiology reports (EHR-radiology model) had the best performance. During internal and external validation, the EHR-radiology model had AUROC of 0.91 (95% CI, 0.88-0.93) and 0.88 (95% CI, 0.87-0.93), respectively. Externally, the ICI was 0.13 (95% CI, 0.08-0.18). At a specified model threshold, sensitivity and specificity were 80% (95% CI, 75%-98%), PPV was 64% (95% CI, 58%-71%), and the model identified patients with a median of 2.2 hours (interquartile range 0.2-18.6) after meeting Berlin ARDS criteria. Machine-learning models analyzing EHR data can retrospectively identify patients with ARDS across different institutions.

Revolutionizing Radiology Workflow with Factual and Efficient CXR Report Generation

Pimchanok Sukjai, Apiradee Boonmee

arxiv logopreprintJun 1 2025
The escalating demand for medical image interpretation underscores the critical need for advanced artificial intelligence solutions to enhance the efficiency and accuracy of radiological diagnoses. This paper introduces CXR-PathFinder, a novel Large Language Model (LLM)-centric foundation model specifically engineered for automated chest X-ray (CXR) report generation. We propose a unique training paradigm, Clinician-Guided Adversarial Fine-Tuning (CGAFT), which meticulously integrates expert clinical feedback into an adversarial learning framework to mitigate factual inconsistencies and improve diagnostic precision. Complementing this, our Knowledge Graph Augmentation Module (KGAM) acts as an inference-time safeguard, dynamically verifying generated medical statements against authoritative knowledge bases to minimize hallucinations and ensure standardized terminology. Leveraging a comprehensive dataset of millions of paired CXR images and expert reports, our experiments demonstrate that CXR-PathFinder significantly outperforms existing state-of-the-art medical vision-language models across various quantitative metrics, including clinical accuracy (Macro F1 (14): 46.5, Micro F1 (14): 59.5). Furthermore, blinded human evaluation by board-certified radiologists confirms CXR-PathFinder's superior clinical utility, completeness, and accuracy, establishing its potential as a reliable and efficient aid for radiological practice. The developed method effectively balances high diagnostic fidelity with computational efficiency, providing a robust solution for automated medical report generation.

Dental practitioners versus artificial intelligence software in assessing alveolar bone loss using intraoral radiographs.

Almarghlani A, Fakhri J, Almarhoon A, Ghonaim G, Abed H, Sharka R

pubmed logopapersJun 1 2025
Integrating artificial intelligence (AI) in the dental field can potentially enhance the efficiency of dental care. However, few studies have investigated whether AI software can achieve results comparable to those obtained by dental practitioners (general practitioners (GPs) and specialists) when assessing alveolar bone loss in a clinical setting. Thus, this study compared the performance of AI in assessing periodontal bone loss with those of GPs and specialists. This comparative cross-sectional study evaluated the performance of dental practitioners and AI software in assessing alveolar bone loss. Radiographs were randomly selected to ensure representative samples. Dental practitioners independently evaluated the radiographs, and the AI software "Second Opinion Software" was tested using the same set of radiographs evaluated by the dental practitioners. The results produced by the AI software were then compared with the baseline values to measure their accuracy and allow direct comparison with the performance of human specialists. The survey received 149 responses, where each answered 10 questions to compare the measurements made by AI and dental practitioners when assessing the amount of bone loss radiographically. The mean estimates of the participants had a moderate positive correlation with the radiographic measurements (rho = 0.547, <i>p</i> < 0.001) and a weaker but still significant correlation with AI measurements (rho = 0.365, <i>p</i> < 0.001). AI measurements had a stronger positive correlation with the radiographic measurements (rho = 0.712, <i>p</i> < 0.001) compared with their correlation with the estimates of dental practitioners. This study highlights the capacity of AI software to enhance the accuracy and efficiency of radiograph-based evaluations of alveolar bone loss. Dental practitioners are vital for the clinical experience but AI technology provides a consistent and replicable methodology. Future collaborations between AI experts, researchers, and practitioners could potentially optimize patient care.
Page 9 of 18173 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.