Sort by:
Page 89 of 1341332 results

AGE-US: automated gestational age estimation based on fetal ultrasound images

César Díaz-Parga, Marta Nuñez-Garcia, Maria J. Carreira, Gabriel Bernardino, Nicolás Vila-Blanco

arxiv logopreprintJun 19 2025
Being born small carries significant health risks, including increased neonatal mortality and a higher likelihood of future cardiac diseases. Accurate estimation of gestational age is critical for monitoring fetal growth, but traditional methods, such as estimation based on the last menstrual period, are in some situations difficult to obtain. While ultrasound-based approaches offer greater reliability, they rely on manual measurements that introduce variability. This study presents an interpretable deep learning-based method for automated gestational age calculation, leveraging a novel segmentation architecture and distance maps to overcome dataset limitations and the scarcity of segmentation masks. Our approach achieves performance comparable to state-of-the-art models while reducing complexity, making it particularly suitable for resource-constrained settings and with limited annotated data. Furthermore, our results demonstrate that the use of distance maps is particularly suitable for estimating femur endpoints.

Concordance between single-slice abdominal computed tomography-based and bioelectrical impedance-based analysis of body composition in a prospective study.

Fehrenbach U, Hosse C, Wienbrandt W, Walter-Rittel T, Kolck J, Auer TA, Blüthner E, Tacke F, Beetz NL, Geisel D

pubmed logopapersJun 19 2025
Body composition analysis (BCA) is a recognized indicator of patient frailty. Apart from the established bioelectrical impedance analysis (BIA), computed tomography (CT)-derived BCA is being increasingly explored. The aim of this prospective study was to directly compare BCA obtained from BIA and CT. A total of 210 consecutive patients scheduled for CT, including a high proportion of cancer patients, were prospectively enrolled. Immediately prior to the CT scan, all patients underwent BIA. CT-based BCA was performed using a single-slice AI tool for automated detection and segmentation at the level of the third lumbar vertebra (L3). BIA-based parameters, body fat mass (BFM<sub>BIA</sub>) and skeletal muscle mass (SMM<sub>BIA</sub>), CT-based parameters, subcutaneous and visceral adipose tissue area (SATA<sub>CT</sub> and VATA<sub>CT</sub>) and total abdominal muscle area (TAMA<sub>CT</sub>) were determined. Indices were calculated by normalizing the BIA and CT parameters to patient's weight (body fat percentage (BFP<sub>BIA</sub>) and body fat index (BFI<sub>CT</sub>)) or height (skeletal muscle index (SMI<sub>BIA</sub>) and lumbar skeletal muscle index (LSMI<sub>CT</sub>)). Parameters representing fat, BFM<sub>BIA</sub> and SATA<sub>CT</sub> + VATA<sub>CT</sub>, and parameters representing muscle tissue, SMM<sub>BIA</sub> and TAMA<sub>CT</sub>, showed strong correlations in female (fat: r = 0.95; muscle: r = 0.72; p < 0.001) and male (fat: r = 0.91; muscle: r = 0.71; p < 0.001) patients. Linear regression analysis was statistically significant (fat: R<sup>2</sup> = 0.73 (female) and 0.74 (male); muscle: R<sup>2</sup> = 0.56 (female) and 0.56 (male); p < 0.001), showing that BFI<sub>CT</sub> and LSMI<sub>CT</sub> allowed prediction of BFP<sub>BIA</sub> and SMI<sub>BIA</sub> for both sexes. CT-based BCA strongly correlates with BIA results and yields quantitative results for BFP and SMI comparable to the existing gold standard. Question CT-based body composition analysis (BCA) is moving more and more into clinical focus, but validation against established methods is lacking. Findings Fully automated CT-based BCA correlates very strongly with guideline-accepted bioelectrical impedance analysis (BIA). Clinical relevance BCA is currently moving further into clinical focus to improve assessment of patient frailty and individualize therapies accordingly. Comparability with established BIA strengthens the value of CT-based BCA and supports its translation into clinical routine.

Segmentation of Pulp and Pulp Stones with Automatic Deep Learning in Panoramic Radiographs: An Artificial Intelligence Study.

Firincioglulari M, Boztuna M, Mirzaei O, Karanfiller T, Akkaya N, Orhan K

pubmed logopapersJun 19 2025
<b>Background/Objectives</b>: Different sized calcified masses called pulp stones are often detected in dental pulp and can impact dental procedures. The current research was conducted with the aim of measuring the ability of artificial intelligence algorithms to accurately diagnose pulp and pulp stone calcifications on panoramic radiographs. <b>Methods</b>: We used 713 panoramic radiographs, on which a minimum of one pulp stone was detected, identified retrospectively, and included in the study-4675 pulp stones and 5085 pulps were marked on these radiographs using CVAT v1.7.0 labeling software. <b>Results</b>: In the test dataset, the AI model segmented 462 panoramic radiographs for pulp stone and 220 panoramic radiographs for pulp. The dice coefficient and Intersection over Union (IoU) recorded for the Pulp Segmentation model were 0.84 and 0.758, respectively. Precision and recall were computed to be 0.858 and 0.827, respectively. The Pulp Stone Segmentation model achieved a dice coefficient of 0.759 and an IoU of 0.686, with precision and recall of 0.792 and 0.773, respectively. <b>Conclusions</b>: Pulp and pulp stones can successfully be identified using artificial intelligence algorithms. This study provides evidence that artificial intelligence software using deep learning algorithms can be valuable adjunct tools in aiding clinicians in radiographic diagnosis. Further research in which larger datasets are examined are needed to enhance the capability of artificial intelligence models to make accurate diagnoses.

Optimized YOLOv8 for enhanced breast tumor segmentation in ultrasound imaging.

Mostafa AM, Alaerjan AS, Aldughayfiq B, Allahem H, Mahmoud AA, Said W, Shabana H, Ezz M

pubmed logopapersJun 19 2025
Breast cancer significantly affects people's health globally, making early and accurate diagnosis vital. While ultrasound imaging is safe and non-invasive, its manual interpretation is subjective. This study explores machine learning (ML) techniques to improve breast ultrasound image segmentation, comparing models trained on combined versus separate classes of benign and malignant tumors. The YOLOv8 object detection algorithm is applied to the image segmentation task, aiming to capitalize on its robust feature detection capabilities. We utilized a dataset of 780 ultrasound images categorized into benign and malignant classes to train several deep learning (DL) models: UNet, UNet with DenseNet-121, VGG16, VGG19, and an adapted YOLOv8. These models were evaluated in two experimental setups-training on a combined dataset and training on separate datasets for benign and malignant classes. Performance metrics such as Dice Coefficient, Intersection over Union (IoU), and mean Average Precision (mAP) were used to assess model effectiveness. The study demonstrated substantial improvements in model performance when trained on separate classes, with the UNet model's F1-score increasing from 77.80 to 84.09% and Dice Coefficient from 75.58 to 81.17%, and the adapted YOLOv8 model achieving an F1-score improvement from 93.44 to 95.29% and Dice Coefficient from 82.10 to 84.40%. These results highlight the advantage of specialized model training and the potential of using advanced object detection algorithms for segmentation tasks. This research underscores the significant potential of using specialized training strategies and innovative model adaptations in medical imaging segmentation, ultimately contributing to better patient outcomes.

BrainTract: segmentation of white matter fiber tractography and analysis of structural connectivity using hybrid convolutional neural network.

Kumar PR, Shilpa B, Jha RK

pubmed logopapersJun 19 2025
Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain's structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network's width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps' resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain's structural connectivity.

VesselSDF: Distance Field Priors for Vascular Network Reconstruction

Salvatore Esposito, Daniel Rebain, Arno Onken, Changjian Li, Oisin Mac Aodha

arxiv logopreprintJun 19 2025
Accurate segmentation of vascular networks from sparse CT scan slices remains a significant challenge in medical imaging, particularly due to the thin, branching nature of vessels and the inherent sparsity between imaging planes. Existing deep learning approaches, based on binary voxel classification, often struggle with structural continuity and geometric fidelity. To address this challenge, we present VesselSDF, a novel framework that leverages signed distance fields (SDFs) for robust vessel reconstruction. Our method reformulates vessel segmentation as a continuous SDF regression problem, where each point in the volume is represented by its signed distance to the nearest vessel surface. This continuous representation inherently captures the smooth, tubular geometry of blood vessels and their branching patterns. We obtain accurate vessel reconstructions while eliminating common SDF artifacts such as floating segments, thanks to our adaptive Gaussian regularizer which ensures smoothness in regions far from vessel surfaces while producing precise geometry near the surface boundaries. Our experimental results demonstrate that VesselSDF significantly outperforms existing methods and preserves vessel geometry and connectivity, enabling more reliable vascular analysis in clinical settings.

Prompt-based Dynamic Token Pruning to Guide Transformer Attention in Efficient Segmentation

Pallabi Dutta, Anubhab Maity, Sushmita Mitra

arxiv logopreprintJun 19 2025
The high computational demands of Vision Transformers (ViTs), in processing a huge number of tokens, often constrain their practical application in analyzing medical images. This research proposes an adaptive prompt-guided pruning method to selectively reduce the processing of irrelevant tokens in the segmentation pipeline. The prompt-based spatial prior helps to rank the tokens according to their relevance. Tokens with low-relevance scores are down-weighted, ensuring that only the relevant ones are propagated for processing across subsequent stages. This data-driven pruning strategy facilitates end-to-end training, maintains gradient flow, and improves segmentation accuracy by focusing computational resources on essential regions. The proposed framework is integrated with several state-of-the-art models to facilitate the elimination of irrelevant tokens; thereby, enhancing computational efficiency while preserving segmentation accuracy. The experimental results show a reduction of $\sim$ 35-55\% tokens; thus reducing the computational costs relative to the baselines. Cost-effective medical image processing, using our framework, facilitates real-time diagnosis by expanding its applicability in resource-constrained environments.

The Clinical Significance of Femoral and Tibial Anatomy for Anterior Cruciate Ligament Injury and Reconstruction.

Liew FF, Liang J

pubmed logopapersJun 19 2025
The anterior cruciate ligament (ACL) is a crucial stabilizer of the knee joint, and its injury risk and surgical outcomes are closely linked to femoral and tibial anatomy. This review focuses on current evidence on how skeletal parameters, such as femoral intercondylar notch morphology, tibial slope, and insertion site variations-influence ACL biomechanics. A narrowed or concave femoral notch raises the risk of impingement, while a higher posterior tibial slope makes anterior tibial translation worse, which increases ACL strain. Gender disparities exist, with females exhibiting smaller notch dimensions, and hormonal fluctuations may contribute to ligament laxity. Anatomical changes that come with getting older make clinical management even harder. Adolescent patients have problems with epiphyseal growth, and older patients have to deal with degenerative notch narrowing and lower bone density. Preoperative imaging (MRI, CT, and 3D reconstruction) enables precise assessment of anatomical variations, guiding individualized surgical strategies. Optimal femoral and tibial tunnel placement during reconstruction is vital to replicate native ACL biomechanics and avoid graft failure. Emerging technologies, including AI-driven segmentation and deep learning models, enhance risk prediction and intraoperative precision. Furthermore, synergistic factors, such as meniscal integrity and posterior oblique ligament anatomy, need to be integrated into comprehensive evaluations. Future directions emphasize personalized approaches, combining advanced imaging, neuromuscular training, and artificial intelligence to optimize prevention, diagnosis, and rehabilitation. Addressing age-specific challenges, such as growth plate preservation in pediatric cases and osteoarthritis management in the elderly, will improve long-term outcomes. Ultimately, a nuanced understanding of skeletal anatomy and technological integration holds promise for reducing ACL reinjury rates and enhancing patient recovery.

Non-Invasive Diagnosis of Chronic Myocardial Infarction via Composite In-Silico-Human Data Learning.

Mehdi RR, Kadivar N, Mukherjee T, Mendiola EA, Bersali A, Shah DJ, Karniadakis G, Avazmohammadi R

pubmed logopapersJun 19 2025
Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, a completely non-invasive methodology is developed to identify the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, the remarkable performance of a multi-fidelity ML model is demonstrated, which combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. The results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.

Multitask Deep Learning for Automated Segmentation and Prognostic Stratification of Endometrial Cancer via Biparametric MRI.

Yan R, Zhang X, Cao Q, Xu J, Chen Y, Qin S, Zhang S, Zhao W, Xing X, Yang W, Lang N

pubmed logopapersJun 19 2025
Endometrial cancer (EC) is a common gynecologic malignancy; accurate assessment of key prognostic factors is important for treatment planning. To develop a deep learning (DL) framework based on biparametric MRI for automated segmentation and multitask classification of EC key prognostic factors, including grade, stage, histological subtype, lymphovascular space invasion (LVSI), and deep myometrial invasion (DMI). Retrospective. A total of 325 patients with histologically confirmed EC were included: 211 training, 54 validation, and 60 test cases. T2-weighted imaging (T2WI, FSE/TSE) and diffusion-weighted imaging (DWI, SS-EPI) sequences at 1.5 and 3 T. The DL model comprised tumor segmentation and multitask classification. Manual delineation on T2WI and DWI acted as the reference standard for segmentation. Separate models were trained using T2WI alone, DWI alone and combined T2WI + DWI to classify dichotomized key prognostic factors. Performance was assessed in validation and test cohorts. For DMI, the combined model's was compared with visual assessment by four radiologists (with 1, 4, 7, and 20 years' experience), each of whom independently reviewed all cases. Segmentation was evaluated using the dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), Hausdorff distance (HD95), and average surface distance (ASD). Classification performance was assessed using area under the receiver operating characteristic curve (AUC). Model AUCs were compared using DeLong's test. p < 0.05 was considered significant. In the test cohort, DSCs were 0.80 (T2WI) and 0.78 (DWI) and JSCs were 0.69 for both. HD95 and ASD were 7.02/1.71 mm (T2WI) versus 10.58/2.13 mm (DWI). The classification framework achieved AUCs of 0.78-0.94 (validation) and 0.74-0.94 (test). For DMI, the combined model performed comparably to radiologists (p = 0.07-0.84). The unified DL framework demonstrates strong EC segmentation and classification performance, with high accuracy across multiple tasks. 3. Stage 3.
Page 89 of 1341332 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.