Sort by:
Page 84 of 2382377 results

The development of a multimodal prediction model based on CT and MRI for the prognosis of pancreatic cancer.

Dou Z, Lin J, Lu C, Ma X, Zhang R, Zhu J, Qin S, Xu C, Li J

pubmed logopapersAug 6 2025
To develop and validate a hybrid radiomics model to predict the overall survival in pancreatic cancer patients and identify risk factors that affect patient prognosis. We conducted a retrospective analysis of 272 pancreatic cancer patients diagnosed at the First Affiliated Hospital of Soochow University from January 2013 to December 2023, and divided them into a training set and a test set at a ratio of 7:3. Pre-treatment contrast-enhanced computed tomography (CT), magnetic resonance imaging (MRI) images, and clinical features were collected. Dimensionality reduction was performed on the radiomics features using principal component analysis (PCA), and important features with non-zero coefficients were selected using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. In the training set, we built clinical prediction models using both random survival forests (RSF) and traditional Cox regression analysis. These models included a radiomics model based on contrast-enhanced CT, a radiomics model based on MRI, a clinical model, 3 bimodal models combining two types of features, and a multimodal model combining radiomics features with clinical features. Model performance evaluation in the test set was based on two dimensions: discrimination and calibration. In addition, risk stratification was performed in the test set based on predicted risk scores to evaluate the model's prognostic utility. The RSF-based hybrid model performed best with a C-index of 0.807 and a Brier score of 0.101, outperforming the COX hybrid model (C-index of 0.726 and a Brier score of 0.145) and other unimodal and bimodal models. The SurvSHAP(t) plot highlighted CA125 as the most important variable. In the test set, patients were stratified into high- and low-risk groups based on the predicted risk scores, and Kaplan-Meier analysis demonstrated a significant survival difference between the two groups (p < 0.0001). A multi-modal model using radiomics based on clinical tabular data and contrast-enhanced CT and MRI was developed by RSF, presenting strengths in predicting prognosis in pancreatic cancer patients.

Quantum Federated Learning in Healthcare: The Shift from Development to Deployment and from Models to Data.

Bhatia AS, Kais S, Alam MA

pubmed logopapersAug 6 2025
Healthcare organizations have a high volume of sensitive data and traditional technologies have limited storage capacity and computational resources. The prospect of sharing healthcare data for machine learning is more arduous due to firm regulations related to patient privacy. In recent years, federated learning has offered a solution to accelerate distributed machine learning addressing concerns related to data privacy and governance. Currently, the blend of quantum computing and machine learning has experienced significant attention from academic institutions and research communities. The ultimate objective of this work is to develop a federated quantum machine learning framework (FQML) to tackle the optimization, security, and privacy challenges in the healthcare industry for medical imaging tasks. In this work, we proposed federated quantum convolutional neural networks (QCNNs) with distributed training across edge devices. To demonstrate the feasibility of the proposed FQML framework, we performed extensive experiments on two benchmark medical datasets (Pneumonia MNIST, and CT kidney disease analysis), which are non-independently and non-identically partitioned among the healthcare institutions/clients. The proposed framework is validated and assessed via large-scale simulations. Based on our results, the quantum simulation experiments achieve performance levels on par with well-known classical CNN models, 86.3% accuracy on the pneumonia dataset and 92.8% on the CT-kidney dataset, while requiring fewer model parameters and consuming less data. Moreover, the client selection mechanism is proposed to reduce the computation overhead at each communication round, which effectively improves the convergence rate.

ATLASS: An AnaTomicaLly-Aware Self-Supervised Learning Framework for Generalizable Retinal Disease Detection.

Khan AA, Ahmad KM, Shafiq S, Akram MU, Shao J

pubmed logopapersAug 6 2025
Medical imaging, particularly retinal fundus photography, plays a crucial role in early disease detection and treatment for various ocular disorders. However, the development of robust diagnostic systems using deep learning remains constrained by the scarcity of expertly annotated data, which is time-consuming and expensive. Self-Supervised Learning (SSL) has emerged as a promising solution, but existing models fail to effectively incorporate critical domain knowledge specific to retinal anatomy. This potentially limits their clinical relevance and diagnostic capability. We address this issue by introducing an anatomically aware SSL framework that strategically integrates domain expertise through specialized masking of vital retinal structures during pretraining. Our approach leverages vessel and optic disc segmentation maps to guide the SSL process, enabling the development of clinically relevant feature representations without extensive labeled data. The framework combines a Vision Transformer with dual-masking strategies and anatomically informed loss functions to preserve structural integrity during feature learning. Comprehensive evaluation across multiple datasets demonstrates our method's competitive performance in diverse retinal disease classification tasks, including diabetic retinopathy grading, glaucoma detection, age-related macular degeneration identification, and multi-disease classification. The evaluation results establish the effectiveness of anatomically-aware SSL in advancing automated retinal disease diagnosis while addressing the fundamental challenge of limited labeled medical data.

Dynamic neural network modulation associated with rumination in major depressive disorder: a prospective observational comparative analysis of cognitive behavioral therapy and pharmacotherapy.

Katayama N, Shinagawa K, Hirano J, Kobayashi Y, Nakagawa A, Umeda S, Kamiya K, Tajima M, Amano M, Nogami W, Ihara S, Noda S, Terasawa Y, Kikuchi T, Mimura M, Uchida H

pubmed logopapersAug 6 2025
Cognitive behavioral therapy (CBT) and pharmacotherapy are primary treatments for major depressive disorder (MDD). However, their differential effects on the neural networks associated with rumination, or repetitive negative thinking, remain poorly understood. This study included 135 participants, whose rumination severity was measured using the rumination response scale (RRS) and whose resting brain activity was measured using functional magnetic resonance imaging (fMRI) at baseline and after 16 weeks. MDD patients received either standard CBT based on Beck's manual (n = 28) or pharmacotherapy (n = 32). Using a hidden Markov model, we observed that MDD patients exhibited increased activity in the default mode network (DMN) and decreased occupancies in the sensorimotor and central executive networks (CEN). The DMN occurrence rate correlated positively with rumination severity. CBT, while not specifically designed to target rumination, reduced DMN occurrence rate and facilitated transitions toward a CEN-dominant brain state as part of broader therapeutic effects. Pharmacotherapy shifted DMN activity to the posterior region of the brain. These findings suggest that CBT and pharmacotherapy modulate brain network dynamics related to rumination through distinct therapeutic pathways.

On the effectiveness of multimodal privileged knowledge distillation in two vision transformer based diagnostic applications

Simon Baur, Alexandra Benova, Emilio Dolgener Cantú, Jackie Ma

arxiv logopreprintAug 6 2025
Deploying deep learning models in clinical practice often requires leveraging multiple data modalities, such as images, text, and structured data, to achieve robust and trustworthy decisions. However, not all modalities are always available at inference time. In this work, we propose multimodal privileged knowledge distillation (MMPKD), a training strategy that utilizes additional modalities available solely during training to guide a unimodal vision model. Specifically, we used a text-based teacher model for chest radiographs (MIMIC-CXR) and a tabular metadata-based teacher model for mammography (CBIS-DDSM) to distill knowledge into a vision transformer student model. We show that MMPKD can improve the resulting attention maps' zero-shot capabilities of localizing ROI in input images, while this effect does not generalize across domains, as contrarily suggested by prior research.

Deep learning-based radiomics does not improve residual cancer burden prediction post-chemotherapy in LIMA breast MRI trial.

Janse MHA, Janssen LM, Wolters-van der Ben EJM, Moman MR, Viergever MA, van Diest PJ, Gilhuijs KGA

pubmed logopapersAug 6 2025
This study aimed to evaluate the potential additional value of deep radiomics for assessing residual cancer burden (RCB) in locally advanced breast cancer, after neoadjuvant chemotherapy (NAC) but before surgery, compared to standard predictors: tumor volume and subtype. This retrospective study used a 105-patient single-institution training set and a 41-patient external test set from three institutions in the LIMA trial. DCE-MRI was performed before and after NAC, and RCB was determined post-surgery. Three networks (nnU-Net, Attention U-net and vector-quantized encoder-decoder) were trained for tumor segmentation. For each network, deep features were extracted from the bottleneck layer and used to train random forest regression models to predict RCB score. Models were compared to (1) a model trained on tumor volume and (2) a model combining tumor volume and subtype. The potential complementary performance of combining deep radiomics with a clinical-radiological model was assessed. From the predicted RCB score, three metrics were calculated: area under the curve (AUC) for categories RCB-0/RCB-I versus RCB-II/III, pathological complete response (pCR) versus non-pCR, and Spearman's correlation. Deep radiomics models had an AUC between 0.68-0.74 for pCR and 0.68-0.79 for RCB, while the volume-only model had an AUC of 0.74 and 0.70 for pCR and RCB, respectively. Spearman's correlation varied from 0.45-0.51 (deep radiomics) to 0.53 (combined model). No statistical difference between models was observed. Segmentation network-derived deep radiomics contain similar information to tumor volume and subtype for inferring pCR and RCB after NAC, but do not complement standard clinical predictors in the LIMA trial. Question It is unknown if and which deep radiomics approach is most suitable to extract relevant features to assess neoadjuvant chemotherapy response on breast MRI. Findings Radiomic features extracted from deep-learning networks yield similar results in predicting neoadjuvant chemotherapy response as tumor volume and subtype in the LIMA study. However, they do not provide complementary information. Clinical relevance For predicting response to neoadjuvant chemotherapy in breast cancer patients, tumor volume on MRI and subtype remain important predictors of treatment outcome; deep radiomics might be an alternative when determining tumor volume and/or subtype is not feasible.

STARFormer: A novel spatio-temporal aggregation reorganization transformer of FMRI for brain disorder diagnosis.

Dong W, Li Y, Zeng W, Chen L, Yan H, Siok WT, Wang N

pubmed logopapersAug 5 2025
Many existing methods that use functional magnetic resonance imaging (fMRI) to classify brain disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), often overlook the integration of spatial and temporal dependencies of the blood oxygen level-dependent (BOLD) signals, which may lead to inaccurate or imprecise classification results. To solve this problem, we propose a spatio-temporal aggregation reorganization transformer (STARFormer) that effectively captures both spatial and temporal features of BOLD signals by incorporating three key modules. The region of interest (ROI) spatial structure analysis module uses eigenvector centrality (EC) to reorganize brain regions based on effective connectivity, highlighting critical spatial relationships relevant to the brain disorder. The temporal feature reorganization module systematically segments the time series into equal-dimensional window tokens and captures multiscale features through variable window and cross-window attention. The spatio-temporal feature fusion module employs a parallel transformer architecture with dedicated temporal and spatial branches to extract integrated features. The proposed STARFormer has been rigorously evaluated on two publicly available datasets for the classification of ASD and ADHD. The experimental results confirm that STARFormer achieves state-of-the-art performance across multiple evaluation metrics, providing a more accurate and reliable tool for the diagnosis of brain disorders and biomedical research. The official implementation codes are available at: https://github.com/NZWANG/STARFormer.

Prediction of breast cancer HER2 status changes based on ultrasound radiomics attention network.

Liu J, Xue X, Yan Y, Song Q, Cheng Y, Wang L, Wang X, Xu D

pubmed logopapersAug 5 2025
Following Neoadjuvant Chemotherapy (NAC), there exists a probability of changes occurring in the Human Epidermal Growth Factor Receptor 2 (HER2) status. If these changes are not promptly addressed, it could hinder the timely adjustment of treatment plans, thereby affecting the optimal management of breast cancer. Consequently, the accurate prediction of HER2 status changes holds significant clinical value, underscoring the need for a model capable of precisely forecasting these alterations. In this paper, we elucidate the intricacies surrounding HER2 status changes, and propose a deep learning architecture combined with radiomics techniques, named as Ultrasound Radiomics Attention Network (URAN), to predict HER2 status changes. Firstly, radiomics technology is used to extract ultrasound image features to provide rich and comprehensive medical information. Secondly, HER2 Key Feature Selection (HKFS) network is constructed for retain crucial features relevant to HER2 status change. Thirdly, we design Max and Average Attention and Excitation (MAAE) network to adjust the model's focus on different key features. Finally, a fully connected neural network is utilized to predict HER2 status changes. The code to reproduce our experiments can be found at https://github.com/joanaapa/Foundation-Medical. Our research was carried out using genuine ultrasound images sourced from hospitals. On this dataset, URAN outperformed both state-of-the-art and traditional methods in predicting HER2 status changes, achieving an accuracy of 0.8679 and an AUC of 0.8328 (95% CI: 0.77-0.90). Comparative experiments on the public BUS_UCLM dataset further demonstrated URAN's superiority, attaining an accuracy of 0.9283 and an AUC of 0.9161 (95% CI: 0.91-0.92). Additionally, we undertook rigorously crafted ablation studies, which validated the logicality and effectiveness of the radiomics techniques, as well as the HKFS and MAAE modules integrated within the URAN model. The results pertaining to specific HER2 statuses indicate that URAN exhibits superior accuracy in predicting changes in HER2 status characterized by low expression and IHC scores of 2+ or below. Furthermore, we examined the radiomics attributes of ultrasound images and discovered that various wavelet transform features significantly impacted the changes in HER2 status. We have developed a URAN method for predicting HER2 status changes that combines radiomics techniques and deep learning. URAN model have better predictive performance compared to other competing algorithms, and can mine key radiomics features related to HER2 status changes.

Altered effective connectivity in patients with drug-naïve first-episode, recurrent, and medicated major depressive disorder: a multi-site fMRI study.

Dai P, Huang K, Hu T, Chen Q, Liao S, Grecucci A, Yi X, Chen BT

pubmed logopapersAug 5 2025
Major depressive disorder (MDD) has been diagnosed through subjective and inconsistent clinical assessments. Resting-state functional magnetic resonance imaging (rs-fMRI) with connectivity analysis has been valuable for identifying neural correlates of patients with MDD, yet most studies rely on single-site and small sample sizes. This study utilized large-scale, multi-site rs-fMRI data from the Rest-meta-MDD consortium to assess effective connectivity in patients with MDD and its subtypes, i.e., drug-naïve first-episode (FEDN), recurrent (RMDD), and medicated MDD (MMDD) subtypes. To mitigate site-related variability, the ComBat algorithm was applied, and multivariate linear regression was used to control for age and gender effects. A random forest classification model was developed to identify the most predictive features. Nested five-fold cross-validation was used to assess model performance. The model effectively distinguished FEDN subtype from healthy controls (HC) group, achieving 90.13% accuracy and 96.41% AUC. However, classification performance for RMDD vs. FEDN and MMDD vs. FEDN was lower, suggesting that differences between the subtypes were less pronounced than differences between the patients with MDD and the HC group. Patients with RMDD exhibited more extensive connectivity abnormalities in the frontal-limbic system and default mode network than the patients with FEDN, implying heightened rumination. Additionally, treatment with medication appeared to partially modulate the aberrant connectivity, steering it toward normalization. This study showed altered brain connectivity in patients with MDD and its subtypes, which could be classified with machine learning models with robust performance. Abnormal connectivity could be the potential neural correlates for the presenting symptoms of patients with MDD. These findings provide novel insights into the neural pathogenesis of patients with MDD.

Beyond unimodal analysis: Multimodal ensemble learning for enhanced assessment of atherosclerotic disease progression.

Guarrasi V, Bertgren A, Näslund U, Wennberg P, Soda P, Grönlund C

pubmed logopapersAug 5 2025
Atherosclerosis is a leading cardiovascular disease typified by fatty streaks accumulating within arterial walls, culminating in potential plaque ruptures and subsequent strokes. Existing clinical risk scores, such as systematic coronary risk estimation and Framingham risk score, profile cardiovascular risks based on factors like age, cholesterol, and smoking, among others. However, these scores display limited sensitivity in early disease detection. Parallelly, ultrasound-based risk markers, such as the carotid intima media thickness, while informative, only offer limited predictive power. Notably, current models largely focus on either ultrasound image-derived risk markers or clinical risk factor data without combining both for a comprehensive, multimodal assessment. This study introduces a multimodal ensemble learning framework to assess atherosclerosis severity, especially in its early sub-clinical stage. We utilize a multi-objective optimization targeting both performance and diversity, aiming to integrate features from each modality effectively. Our objective is to measure the efficacy of models using multimodal data in assessing vascular aging, i.e., plaque presence and vascular age, over a six-year period. We also delineate a procedure for optimal model selection from a vast pool, focusing on best-suited models for classification tasks. Additionally, through eXplainable Artificial Intelligence techniques, this work delves into understanding key model contributors and discerning unique subject subgroups.
Page 84 of 2382377 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.