Sort by:
Page 82 of 99982 results

Radiomics across modalities: a comprehensive review of neurodegenerative diseases.

Inglese M, Conti A, Toschi N

pubmed logopapersJun 1 2025
Radiomics allows extraction from medical images of quantitative features that are able to reveal tissue patterns that are generally invisible to human observers. Despite the challenges in visually interpreting radiomic features and the computational resources required to generate them, they hold significant value in downstream automated processing. For instance, in statistical or machine learning frameworks, radiomic features enhance sensitivity and specificity, making them indispensable for tasks such as diagnosis, prognosis, prediction, monitoring, image-guided interventions, and evaluating therapeutic responses. This review explores the application of radiomics in neurodegenerative diseases, with a focus on Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. While radiomics literature often focuses on magnetic resonance imaging (MRI) and computed tomography (CT), this review also covers its broader application in nuclear medicine, with use cases of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiomics. Additionally, we review integrated radiomics, where features from multiple imaging modalities are fused to improve model performance. This review also highlights the growing integration of radiomics with artificial intelligence and the need for feature standardisation and reproducibility to facilitate its translation into clinical practice.

Advancing Intracranial Aneurysm Detection: A Comprehensive Systematic Review and Meta-analysis of Deep Learning Models Performance, Clinical Integration, and Future Directions.

Delfan N, Abbasi F, Emamzadeh N, Bahri A, Parvaresh Rizi M, Motamedi A, Moshiri B, Iranmehr A

pubmed logopapersJun 1 2025
Cerebral aneurysms pose a significant risk to patient safety, particularly when ruptured, emphasizing the need for early detection and accurate prediction. Traditional diagnostic methods, reliant on clinician-based evaluations, face challenges in sensitivity and consistency, prompting the exploration of deep learning (DL) systems for improved performance. This systematic review and meta-analysis assessed the performance of DL models in detecting and predicting intracranial aneurysms compared to clinician-based evaluations. Imaging modalities included CT angiography (CTA), digital subtraction angiography (DSA), and time-of-flight MR angiography (TOF-MRA). Data on lesion-wise sensitivity, specificity, and the impact of DL assistance on clinician performance were analyzed. Subgroup analyses evaluated DL sensitivity by aneurysm size and location, and interrater agreement was measured using Fleiss' κ. DL systems achieved an overall lesion-wise sensitivity of 90 % and specificity of 94 %, outperforming human diagnostics. Clinician specificity improved significantly with DL assistance, increasing from 83 % to 85 % in the patient-wise scenario and from 93 % to 95 % in the lesion-wise scenario. Similarly, clinician sensitivity also showed notable improvement with DL assistance, rising from 82 % to 96 % in the patient-wise scenario and from 82 % to 88 % in the lesion-wise scenario. Subgroup analysis showed DL sensitivity varied with aneurysm size and location, reaching 100 % for aneurysms larger than 10 mm. Additionally, DL assistance improved interrater agreement among clinicians, with Fleiss' κ increasing from 0.668 to 0.862. DL models demonstrate transformative potential in managing cerebral aneurysms by enhancing diagnostic accuracy, reducing missed cases, and supporting clinical decision-making. However, further validation in diverse clinical settings and seamless integration into standard workflows are necessary to fully realize the benefits of DL-driven diagnostics.

Driving Knowledge to Action: Building a Better Future With Artificial Intelligence-Enabled Multidisciplinary Oncology.

Loaiza-Bonilla A, Thaker N, Chung C, Parikh RB, Stapleton S, Borkowski P

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is transforming multidisciplinary oncology at an unprecedented pace, redefining how clinicians detect, classify, and treat cancer. From earlier and more accurate diagnoses to personalized treatment planning, AI's impact is evident across radiology, pathology, radiation oncology, and medical oncology. By leveraging vast and diverse data-including imaging, genomic, clinical, and real-world evidence-AI algorithms can uncover complex patterns, accelerate drug discovery, and help identify optimal treatment regimens for each patient. However, realizing the full potential of AI also necessitates addressing concerns regarding data quality, algorithmic bias, explainability, privacy, and regulatory oversight-especially in low- and middle-income countries (LMICs), where disparities in cancer care are particularly pronounced. This study provides a comprehensive overview of how AI is reshaping cancer care, reviews its benefits and challenges, and outlines ethical and policy implications in line with ASCO's 2025 theme, <i>Driving Knowledge to Action.</i> We offer concrete calls to action for clinicians, researchers, industry stakeholders, and policymakers to ensure that AI-driven, patient-centric oncology is accessible, equitable, and sustainable worldwide.

Artificial intelligence in fetal brain imaging: Advancements, challenges, and multimodal approaches for biometric and structural analysis.

Wang L, Fatemi M, Alizad A

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is transforming fetal brain imaging by addressing key challenges in diagnostic accuracy, efficiency, and data integration in prenatal care. This review explores AI's application in enhancing fetal brain imaging through ultrasound (US) and magnetic resonance imaging (MRI), with a particular focus on multimodal integration to leverage their complementary strengths. By critically analyzing state-of-the-art AI methodologies, including deep learning frameworks and attention-based architectures, this study highlights significant advancements alongside persistent challenges. Notable barriers include the scarcity of diverse and high-quality datasets, computational inefficiencies, and ethical concerns surrounding data privacy and security. Special attention is given to multimodal approaches that integrate US and MRI, combining the accessibility and real-time imaging of US with the superior soft tissue contrast of MRI to improve diagnostic precision. Furthermore, this review emphasizes the transformative potential of AI in fostering clinical adoption through innovations such as real-time diagnostic tools and human-AI collaboration frameworks. By providing a comprehensive roadmap for future research and implementation, this study underscores AI's potential to redefine fetal imaging practices, enhance diagnostic accuracy, and ultimately improve perinatal care outcomes.

Large Language Models for Diagnosing Focal Liver Lesions From CT/MRI Reports: A Comparative Study With Radiologists.

Sheng L, Chen Y, Wei H, Che F, Wu Y, Qin Q, Yang C, Wang Y, Peng J, Bashir MR, Ronot M, Song B, Jiang H

pubmed logopapersJun 1 2025
Whether large language models (LLMs) could be integrated into the diagnostic workflow of focal liver lesions (FLLs) remains unclear. We aimed to investigate two generic LLMs (ChatGPT-4o and Gemini) regarding their diagnostic accuracies referring to the CT/MRI reports, compared to and combined with radiologists of different experience levels. From April 2022 to April 2024, this single-center retrospective study included consecutive adult patients who underwent contrast-enhanced CT/MRI for single FLL and subsequent histopathologic examination. The LLMs were prompted by clinical information and the "findings" section of radiology reports three times to provide differential diagnoses in the descending order of likelihood, with the first considered the final diagnosis. In the research setting, six radiologists (three junior and three middle-level) independently reviewed the CT/MRI images and clinical information in two rounds (first alone, then with LLM assistance). In the clinical setting, diagnoses were retrieved from the "impressions" section of radiology reports. Diagnostic accuracy was investigated against histopathology. 228 patients (median age, 59 years; 155 males) with 228 FLLs (median size, 3.6 cm) were included. Regarding the final diagnosis, the accuracy of two-step ChatGPT-4o (78.9%) was higher than single-step ChatGPT-4o (68.0%, p < 0.001) and single-step Gemini (73.2%, p = 0.004), similar to real-world radiology reports (80.0%, p = 0.34) and junior radiologists (78.9%-82.0%; p-values, 0.21 to > 0.99), but lower than middle-level radiologists (84.6%-85.5%; p-values, 0.001 to 0.02). No incremental diagnostic value of ChatGPT-4o was observed for any radiologist (p-values, 0.63 to > 0.99). Two-step ChatGPT-4o showed matching accuracies to real-world radiology reports and junior radiologists for diagnosing FLLs but was less accurate than middle-level radiologists and demonstrated little incremental diagnostic value.

[Applications of artificial intelligence in cardiovascular imaging: advantages, limitations, and future challenges].

Fortuni F, Petrina SM, Nicolosi GL

pubmed logopapersJun 1 2025
Artificial intelligence (AI) is rapidly transforming cardiovascular imaging, offering innovative solutions to enhance diagnostic precision, prognostic accuracy, and therapeutic decision-making. This review explores the role of AI in cardiovascular imaging, highlighting its applications, advantages, limitations, and future challenges. The discussion is structured by imaging modalities, including echocardiography, cardiac and coronary computed tomography, cardiac magnetic resonance, and nuclear cardiology. For each modality, we examine AI's contributions across the patient care continuum: from patient selection and image acquisition to quantitative and qualitative analysis, interpretation support, prognostic stratification, therapeutic guidance, and integration with other clinical data. AI applications demonstrate significant potential to streamline workflows, improve diagnostic accuracy, and provide advanced insights for complex clinical scenarios. However, several limitations must be addressed. Many AI algorithms are developed using data from single, high-expertise centers, raising concerns about their generalizability to routine clinical practice. In some cases, these algorithms may even produce misleading results. Additionally, the "black box" nature of certain AI systems poses challenges for cardiologists, making discrepancies difficult to interpret or rectify. Importantly, AI should be seen as a complementary tool rather than a replacement for cardiologists, designed to expedite routine tasks and allow clinicians to focus on complex cases. Future challenges include fostering clinician involvement in algorithm development and extending AI implementation to peripheral healthcare centers. This approach aims to enhance accessibility, understanding, and applicability of AI in everyday clinical practice, ultimately democratizing its benefits and ensuring equitable integration into healthcare systems.

Artificial Intelligence for Teaching Case Curation: Evaluating Model Performance on Imaging Report Discrepancies.

Bartley M, Huemann Z, Hu J, Tie X, Ross AB, Kennedy T, Warner JD, Bradshaw T, Lawrence EM

pubmed logopapersJun 1 2025
Assess the feasibility of using a large language model (LLM) to identify valuable radiology teaching cases through report discrepancy detection. Retrospective study included after-hours head CT and musculoskeletal radiograph exams from January 2017 to December 2021. Discrepancy level between trainee's preliminary interpretation and final attending report was annotated on a 5-point scale. RadBERT, an LLM pretrained on a vast corpus of radiology text, was fine-tuned for discrepancy detection. For comparison and to ensure the robustness of the approach, Mixstral 8×7B, Mistral 7B, and Llama2 were also evaluated. The model's performance in detecting discrepancies was evaluated using a randomly selected hold-out test set. A subset of discrepant cases identified by the LLM was compared to a random case set by recording clinical parameters, discrepant pathology, and evaluating possible educational value. F1 statistic was used for model comparison. Pearson's chi-squared test was employed to assess discrepancy prevalence and score between groups (significance set at p<0.05). The fine-tuned LLM model achieved an overall accuracy of 90.5% with a specificity of 95.5% and a sensitivity of 66.3% for discrepancy detection. The model sensitivity significantly improved with higher discrepancy scores, 49% (34/70) for score 2 versus 67% (47/62) for score 3, and 81% (35/43) for score 4/5 (p<0.05 compared to score 2). LLM-curated set showed a significant increase in the prevalence of all discrepancies and major discrepancies (scores 4 or 5) compared to a random case set (P<0.05 for both). Evaluation of the clinical characteristics from both the random and discrepant case sets demonstrated a broad mix of pathologies and discrepancy types. An LLM can detect trainee report discrepancies, including both higher and lower-scoring discrepancies, and may improve case set curation for resident education as well as serve as a trainee oversight tool.

Multimodal Neuroimaging Based Alzheimer's Disease Diagnosis Using Evolutionary RVFL Classifier.

Goel T, Sharma R, Tanveer M, Suganthan PN, Maji K, Pilli R

pubmed logopapersJun 1 2025
Alzheimer's disease (AD) is one of the most known causes of dementia which can be characterized by continuous deterioration in the cognitive skills of elderly people. It is a non-reversible disorder that can only be cured if detected early, which is known as mild cognitive impairment (MCI). The most common biomarkers to diagnose AD are structural atrophy and accumulation of plaques and tangles, which can be detected using magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Therefore, the present paper proposes wavelet transform-based multimodality fusion of MRI and PET scans to incorporate structural and metabolic information for the early detection of this life-taking neurodegenerative disease. Further, the deep learning model, ResNet-50, extracts the fused images' features. The random vector functional link (RVFL) with only one hidden layer is used to classify the extracted features. The weights and biases of the original RVFL network are being optimized by using an evolutionary algorithm to get optimum accuracy. All the experiments and comparisons are performed over the publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to demonstrate the suggested algorithm's efficacy.

Classification of differentially activated groups of fibroblasts using morphodynamic and motile features.

Kang M, Min C, Devarasou S, Shin JH

pubmed logopapersJun 1 2025
Fibroblasts play essential roles in cancer progression, exhibiting activation states that can either promote or inhibit tumor growth. Understanding these differential activation states is critical for targeting the tumor microenvironment (TME) in cancer therapy. However, traditional molecular markers used to identify cancer-associated fibroblasts are limited by their co-expression across multiple fibroblast subtypes, making it difficult to distinguish specific activation states. Morphological and motility characteristics of fibroblasts reflect their underlying gene expression patterns and activation states, making these features valuable descriptors of fibroblast behavior. This study proposes an artificial intelligence-based classification framework to identify and characterize differentially activated fibroblasts by analyzing their morphodynamic and motile features. We extract these features from label-free live-cell imaging data of fibroblasts co-cultured with breast cancer cell lines using deep learning and machine learning algorithms. Our findings show that morphodynamic and motile features offer robust insights into fibroblast activation states, complementing molecular markers and overcoming their limitations. This biophysical state-based cellular classification framework provides a novel, comprehensive approach for characterizing fibroblast activation, with significant potential for advancing our understanding of the TME and informing targeted cancer therapies.

Scale-Aware Super-Resolution Network With Dual Affinity Learning for Lesion Segmentation From Medical Images.

Luo L, Li Y, Chai Z, Lin H, Heng PA, Chen H

pubmed logopapersJun 1 2025
Convolutional neural networks (CNNs) have shown remarkable progress in medical image segmentation. However, the lesion segmentation remains a challenge to state-of-the-art CNN-based algorithms due to the variance in scales and shapes. On the one hand, tiny lesions are hard to delineate precisely from the medical images which are often of low resolutions. On the other hand, segmenting large-size lesions requires large receptive fields, which exacerbates the first challenge. In this article, we present a scale-aware super-resolution (SR) network to adaptively segment lesions of various sizes from low-resolution (LR) medical images. Our proposed network contains dual branches to simultaneously conduct lesion mask SR (LMSR) and lesion image SR (LISR). Meanwhile, we introduce scale-aware dilated convolution (SDC) blocks into the multitask decoders to adaptively adjust the receptive fields of the convolutional kernels according to the lesion sizes. To guide the segmentation branch to learn from richer high-resolution (HR) features, we propose a feature affinity (FA) module and a scale affinity (SA) module to enhance the multitask learning of the dual branches. On multiple challenging lesion segmentation datasets, our proposed network achieved consistent improvements compared with other state-of-the-art methods. Code will be available at: https://github.com/poiuohke/SASR_Net.
Page 82 of 99982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.