Sort by:
Page 81 of 2372364 results

Sparse transformer and multipath decision tree: a novel approach for efficient brain tumor classification.

Li P, Jin Y, Wang M, Liu F

pubmed logopapersAug 7 2025
Early classification of brain tumors is the key to effective treatment. With advances in medical imaging technology, automated classification algorithms face challenges due to tumor diversity. Although Swin Transformer is effective in handling high-resolution images, it encounters difficulties with small datasets and high computational complexity. This study introduces SparseSwinMDT, a novel model that combines sparse token representation with multipath decision trees. Experimental results show that SparseSwinMDT achieves an accuracy of 99.47% in brain tumor classification, significantly outperforming existing methods while reducing computation time, making it particularly suitable for resource-constrained medical environments.

Predictive Modeling of Osteonecrosis of the Femoral Head Progression Using MobileNetV3_Large and Long Short-Term Memory Network: Novel Approach.

Kong G, Zhang Q, Liu D, Pan J, Liu K

pubmed logopapersAug 6 2025
The assessment of osteonecrosis of the femoral head (ONFH) often presents challenges in accuracy and efficiency. Traditional methods rely on imaging studies and clinical judgment, prompting the need for advanced approaches. This study aims to use deep learning algorithms to enhance disease assessment and prediction in ONFH, optimizing treatment strategies. The primary objective of this research is to analyze pathological images of ONFH using advanced deep learning algorithms to evaluate treatment response, vascular reconstruction, and disease progression. By identifying the most effective algorithm, this study seeks to equip clinicians with precise tools for disease assessment and prediction. Magnetic resonance imaging (MRI) data from 30 patients diagnosed with ONFH were collected, totaling 1200 slices, which included 675 slices with lesions and 225 normal slices. The dataset was divided into training (630 slices), validation (135 slices), and test (135 slices) sets. A total of 10 deep learning algorithms were tested for training and optimization, and MobileNetV3_Large was identified as the optimal model for subsequent analyses. This model was applied for quantifying vascular reconstruction, evaluating treatment responses, and assessing lesion progression. In addition, a long short-term memory (LSTM) model was integrated for the dynamic prediction of time-series data. The MobileNetV3_Large model demonstrated an accuracy of 96.5% (95% CI 95.1%-97.8%) and a recall of 94.8% (95% CI 93.2%-96.4%) in ONFH diagnosis, significantly outperforming DenseNet201 (87.3%; P<.05). Quantitative evaluation of treatment responses showed that vascularized bone grafting resulted in an average increase of 12.4 mm in vascular length (95% CI 11.2-13.6 mm; P<.01) and an increase of 2.7 in branch count (95% CI 2.3-3.1; P<.01) among the 30 patients. The model achieved an AUC of 0.92 (95% CI 0.90-0.94) for predicting lesion progression, outperforming traditional methods like ResNet50 (AUC=0.85; P<.01). Predictions were consistent with clinical observations in 92.5% of cases (24/26). The application of deep learning algorithms in examining treatment response, vascular reconstruction, and disease progression in ONFH presents notable advantages. This study offers clinicians a precise tool for disease assessment and highlights the significance of using advanced technological solutions in health care practice.

Artificial Intelligence and Extended Reality in TAVR: Current Applications and Challenges.

Skalidis I, Sayah N, Benamer H, Amabile N, Laforgia P, Champagne S, Hovasse T, Garot J, Garot P, Akodad M

pubmed logopapersAug 6 2025
Integration of AI and XR in TAVR is revolutionizing the management of severe aortic stenosis by enhancing diagnostic accuracy, risk stratification, and pre-procedural planning. Advanced algorithms now facilitate precise electrocardiographic, echocardiographic, and CT-based assessments that reduce observer variability and enable patient-specific risk prediction. Immersive XR technologies, including augmented, virtual, and mixed reality, improve spatial visualization of complex cardiac anatomy and support real-time procedural guidance. Despite these advancements, standardized protocols, regulatory frameworks, and ethical safeguards remain necessary for widespread clinical adoption.

Foundation models for radiology-the position of the AI for Health Imaging (AI4HI) network.

de Almeida JG, Alberich LC, Tsakou G, Marias K, Tsiknakis M, Lekadir K, Marti-Bonmati L, Papanikolaou N

pubmed logopapersAug 6 2025
Foundation models are large models trained on big data which can be used for downstream tasks. In radiology, these models can potentially address several gaps in fairness and generalization, as they can be trained on massive datasets without labelled data and adapted to tasks requiring data with a small number of descriptions. This reduces one of the limiting bottlenecks in clinical model construction-data annotation-as these models can be trained through a variety of techniques that require little more than radiological images with or without their corresponding radiological reports. However, foundation models may be insufficient as they are affected-to a smaller extent when compared with traditional supervised learning approaches-by the same issues that lead to underperforming models, such as a lack of transparency/explainability, and biases. To address these issues, we advocate that the development of foundation models should not only be pursued but also accompanied by the development of a decentralized clinical validation and continuous training framework. This does not guarantee the resolution of the problems associated with foundation models, but it enables developers, clinicians and patients to know when, how and why models should be updated, creating a clinical AI ecosystem that is better capable of serving all stakeholders. CRITICAL RELEVANCE STATEMENT: Foundation models may mitigate issues like bias and poor generalization in radiology AI, but challenges persist. We propose a decentralized, cross-institutional framework for continuous validation and training to enhance model reliability, safety, and clinical utility. KEY POINTS: Foundation models trained on large datasets reduce annotation burdens and improve fairness and generalization in radiology. Despite improvements, they still face challenges like limited transparency, explainability, and residual biases. A decentralized, cross-institutional framework for clinical validation and continuous training can strengthen reliability and inclusivity in clinical AI.

Development and validation of the multidimensional machine learning model for preoperative risk stratification in papillary thyroid carcinoma: a multicenter, retrospective cohort study.

Feng JW, Zhang L, Yang YX, Qin RJ, Liu SQ, Qin AC, Jiang Y

pubmed logopapersAug 6 2025
This study aims to develop and validate a multi-modal machine learning model for preoperative risk stratification in papillary thyroid carcinoma (PTC), addressing limitations of current systems that rely on postoperative pathological features. We analyzed 974 PTC patients from three medical centers in China using a multi-modal approach integrating: (1) clinical indicators, (2) immunological indices, (3) ultrasound radiomics features, and (4) CT radiomics features. Our methodology employed gradient boosting machine for feature selection and random forest for classification, with model interpretability provided through SHapley Additive exPlanations (SHAP) analysis. The model was validated on internal (n = 225) and two external cohorts (n = 51, n = 174). The final 15-feature model achieved AUCs of 0.91, 0.84, and 0.77 across validation cohorts, improving to 0.96, 0.95, and 0.89 after cohort-specific refitting. SHAP analysis revealed CT texture features, ultrasound morphological features, and immune-inflammatory markers as key predictors, with consistent patterns across validation sites despite center-specific variations. Subgroup analysis showed superior performance in tumors > 1 cm and patients without extrathyroidal extension. Our multi-modal machine learning approach provides accurate preoperative risk stratification for PTC with robust cross-center applicability. This computational framework for integrating heterogeneous imaging and clinical data demonstrates the potential of multi-modal joint learning in healthcare imaging to transform clinical decision-making by enabling personalized treatment planning.

Altered gray matter morphometry in psychogenic erectile dysfunction patients: A Surface-based morphometry study.

Tian Z, Ma Z, Dou B, Huang X, Li G, Chang D, Yin T, Zhang P

pubmed logopapersAug 6 2025
Psychogenic erectile dysfunction (pED) is a prevalent male sexual dysfunction lacking organic etiology. Endeavors have been made in previous studies to disclose the brain pathological mechanisms of pED. However, the cortical morphological characteristics in pED patients remained largely unknown. This study enrolled 50 pED patients and 50 healthy controls (HC). The surface-based morphometry (SBM) analysis was conducted, and the between-group comparisons of the four cortical morphological parameters, including the cortical thickness, sulcus depth, gyrification index, and fractal dimension, were performed to investigate the cortical morphological alterations in pED patients, followed by correlation analysis between clinical data and SBM metrics. Furthermore, a classifier was developed based on a support vector classification algorithm and cortical morphological features to explore the feasibility of discriminating between pED patients and HC at an individual level. The results demonstrated that pED patients manifested consistent alteration in cortical morphology cross metrics in the orbitofrontal cortex, anterior and middle cingulate cortex, dorsolateral prefrontal cortex, and precentral gyrus, which were significantly correlated with the clinical symptoms in pED patients. Additionally, the classifier built based on 11 cortical morphological features achieved an accuracy of 82% in discriminating pED patients from HC. The current study provided new evidence of cortical morphological aberrations in pED patients, which deepened our understanding of the central pathology pattern of pED and was expected to facilitate the objective diagnosis of pED and the development of neuromodulation techniques targeting the alterations above.

The development of a multimodal prediction model based on CT and MRI for the prognosis of pancreatic cancer.

Dou Z, Lin J, Lu C, Ma X, Zhang R, Zhu J, Qin S, Xu C, Li J

pubmed logopapersAug 6 2025
To develop and validate a hybrid radiomics model to predict the overall survival in pancreatic cancer patients and identify risk factors that affect patient prognosis. We conducted a retrospective analysis of 272 pancreatic cancer patients diagnosed at the First Affiliated Hospital of Soochow University from January 2013 to December 2023, and divided them into a training set and a test set at a ratio of 7:3. Pre-treatment contrast-enhanced computed tomography (CT), magnetic resonance imaging (MRI) images, and clinical features were collected. Dimensionality reduction was performed on the radiomics features using principal component analysis (PCA), and important features with non-zero coefficients were selected using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. In the training set, we built clinical prediction models using both random survival forests (RSF) and traditional Cox regression analysis. These models included a radiomics model based on contrast-enhanced CT, a radiomics model based on MRI, a clinical model, 3 bimodal models combining two types of features, and a multimodal model combining radiomics features with clinical features. Model performance evaluation in the test set was based on two dimensions: discrimination and calibration. In addition, risk stratification was performed in the test set based on predicted risk scores to evaluate the model's prognostic utility. The RSF-based hybrid model performed best with a C-index of 0.807 and a Brier score of 0.101, outperforming the COX hybrid model (C-index of 0.726 and a Brier score of 0.145) and other unimodal and bimodal models. The SurvSHAP(t) plot highlighted CA125 as the most important variable. In the test set, patients were stratified into high- and low-risk groups based on the predicted risk scores, and Kaplan-Meier analysis demonstrated a significant survival difference between the two groups (p < 0.0001). A multi-modal model using radiomics based on clinical tabular data and contrast-enhanced CT and MRI was developed by RSF, presenting strengths in predicting prognosis in pancreatic cancer patients.

NEARL-CLIP: Interacted Query Adaptation with Orthogonal Regularization for Medical Vision-Language Understanding

Zelin Peng, Yichen Zhao, Yu Huang, Piao Yang, Feilong Tang, Zhengqin Xu, Xiaokang Yang, Wei Shen

arxiv logopreprintAug 6 2025
Computer-aided medical image analysis is crucial for disease diagnosis and treatment planning, yet limited annotated datasets restrict medical-specific model development. While vision-language models (VLMs) like CLIP offer strong generalization capabilities, their direct application to medical imaging analysis is impeded by a significant domain gap. Existing approaches to bridge this gap, including prompt learning and one-way modality interaction techniques, typically focus on introducing domain knowledge to a single modality. Although this may offer performance gains, it often causes modality misalignment, thereby failing to unlock the full potential of VLMs. In this paper, we propose \textbf{NEARL-CLIP} (i\underline{N}teracted qu\underline{E}ry \underline{A}daptation with o\underline{R}thogona\underline{L} Regularization), a novel cross-modality interaction VLM-based framework that contains two contributions: (1) Unified Synergy Embedding Transformer (USEformer), which dynamically generates cross-modality queries to promote interaction between modalities, thus fostering the mutual enrichment and enhancement of multi-modal medical domain knowledge; (2) Orthogonal Cross-Attention Adapter (OCA). OCA introduces an orthogonality technique to decouple the new knowledge from USEformer into two distinct components: the truly novel information and the incremental knowledge. By isolating the learning process from the interference of incremental knowledge, OCA enables a more focused acquisition of new information, thereby further facilitating modality interaction and unleashing the capability of VLMs. Notably, NEARL-CLIP achieves these two contributions in a parameter-efficient style, which only introduces \textbf{1.46M} learnable parameters.

Small Lesions-aware Bidirectional Multimodal Multiscale Fusion Network for Lung Disease Classification

Jianxun Yu, Ruiquan Ge, Zhipeng Wang, Cheng Yang, Chenyu Lin, Xianjun Fu, Jikui Liu, Ahmed Elazab, Changmiao Wang

arxiv logopreprintAug 6 2025
The diagnosis of medical diseases faces challenges such as the misdiagnosis of small lesions. Deep learning, particularly multimodal approaches, has shown great potential in the field of medical disease diagnosis. However, the differences in dimensionality between medical imaging and electronic health record data present challenges for effective alignment and fusion. To address these issues, we propose the Multimodal Multiscale Cross-Attention Fusion Network (MMCAF-Net). This model employs a feature pyramid structure combined with an efficient 3D multi-scale convolutional attention module to extract lesion-specific features from 3D medical images. To further enhance multimodal data integration, MMCAF-Net incorporates a multi-scale cross-attention module, which resolves dimensional inconsistencies, enabling more effective feature fusion. We evaluated MMCAF-Net on the Lung-PET-CT-Dx dataset, and the results showed a significant improvement in diagnostic accuracy, surpassing current state-of-the-art methods. The code is available at https://github.com/yjx1234/MMCAF-Net

Advanced Multi-Architecture Deep Learning Framework for BIRADS-Based Mammographic Image Retrieval: Comprehensive Performance Analysis with Super-Ensemble Optimization

MD Shaikh Rahman, Feiroz Humayara, Syed Maudud E Rabbi, Muhammad Mahbubur Rashid

arxiv logopreprintAug 6 2025
Content-based mammographic image retrieval systems require exact BIRADS categorical matching across five distinct classes, presenting significantly greater complexity than binary classification tasks commonly addressed in literature. Current medical image retrieval studies suffer from methodological limitations including inadequate sample sizes, improper data splitting, and insufficient statistical validation that hinder clinical translation. We developed a comprehensive evaluation framework systematically comparing CNN architectures (DenseNet121, ResNet50, VGG16) with advanced training strategies including sophisticated fine-tuning, metric learning, and super-ensemble optimization. Our evaluation employed rigorous stratified data splitting (50%/20%/30% train/validation/test), 602 test queries, and systematic validation using bootstrap confidence intervals with 1,000 samples. Advanced fine-tuning with differential learning rates achieved substantial improvements: DenseNet121 (34.79% precision@10, 19.64% improvement) and ResNet50 (34.54%, 19.58% improvement). Super-ensemble optimization combining complementary architectures achieved 36.33% precision@10 (95% CI: [34.78%, 37.88%]), representing 24.93% improvement over baseline and providing 3.6 relevant cases per query. Statistical analysis revealed significant performance differences between optimization strategies (p<0.001) with large effect sizes (Cohen's d>0.8), while maintaining practical search efficiency (2.8milliseconds). Performance significantly exceeds realistic expectations for 5-class medical retrieval tasks, where literature suggests 20-25% precision@10 represents achievable performance for exact BIRADS matching. Our framework establishes new performance benchmarks while providing evidence-based architecture selection guidelines for clinical deployment in diagnostic support and quality assurance applications.
Page 81 of 2372364 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.