Sort by:
Page 81 of 94940 results

A multi-layered defense against adversarial attacks in brain tumor classification using ensemble adversarial training and feature squeezing.

Yinusa A, Faezipour M

pubmed logopapersMay 14 2025
Deep learning, particularly convolutional neural networks (CNNs), has proven valuable for brain tumor classification, aiding diagnostic and therapeutic decisions in medical imaging. Despite their accuracy, these models are vulnerable to adversarial attacks, compromising their reliability in clinical settings. In this research, we utilized a VGG16-based CNN model to classify brain tumors, achieving 96% accuracy on clean magnetic resonance imaging (MRI) data. To assess robustness, we exposed the model to Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) attacks, which reduced accuracy to 32% and 13%, respectively. We then applied a multi-layered defense strategy, including adversarial training with FGSM and PGD examples and feature squeezing techniques such as bit-depth reduction and Gaussian blurring. This approach improved model resilience, achieving 54% accuracy on FGSM and 47% on PGD adversarial examples. Our results highlight the importance of proactive defense strategies for maintaining the reliability of AI in medical imaging under adversarial conditions.

Clinical utility of ultrasound and MRI in rheumatoid arthritis: An expert review.

Kellner DA, Morris NT, Lee SM, Baker JF, Chu P, Ranganath VK, Kaeley GS, Yang HH

pubmed logopapersMay 14 2025
Musculoskeletal ultrasound (MSUS) and magnetic resonance imaging (MRI) are advanced imaging techniques that are increasingly important in the diagnosis and management of rheumatoid arthritis (RA) and have significantly enhanced the rheumatologist's ability to assess RA disease activity and progression. This review serves as a five-year update to our previous publication on the contemporary role of imaging in RA, emphasizing the continued importance of MSUS and MRI in clinical practice and their expanding utility. The review examines the role of MSUS in diagnosing RA, differentiating RA from mimickers, scoring systems and quality control measures, novel longitudinal approaches to disease monitoring, and patient populations that may benefit most from MSUS. It also examines the role of MRI in diagnosing pre-clinical and early RA, disease activity monitoring, research and clinical trials, and development of alternative scoring approaches utilizing artificial intelligence. Finally, the role of MRI in RA diagnosis and management is summarized, and selected practice points offer key tips for integrating MSUS and MRI into clinical practice.

Optimizing breast lesions diagnosis and decision-making with a deep learning fusion model integrating ultrasound and mammography: a dual-center retrospective study.

Xu Z, Zhong S, Gao Y, Huo J, Xu W, Huang W, Huang X, Zhang C, Zhou J, Dan Q, Li L, Jiang Z, Lang T, Xu S, Lu J, Wen G, Zhang Y, Li Y

pubmed logopapersMay 14 2025
This study aimed to develop a BI-RADS network (DL-UM) via integrating ultrasound (US) and mammography (MG) images and explore its performance in improving breast lesion diagnosis and management when collaborating with radiologists, particularly in cases with discordant US and MG Breast Imaging Reporting and Data System (BI-RADS) classifications. We retrospectively collected image data from 1283 women with breast lesions who underwent both US and MG within one month at two medical centres and categorised them into concordant and discordant BI-RADS classification subgroups. We developed a DL-UM network via integrating US and MG images, and DL networks using US (DL-U) or MG (DL-M) alone, respectively. The performance of DL-UM network for breast lesion diagnosis was evaluated using ROC curves and compared to DL-U and DL-M networks in the external testing dataset. The diagnostic performance of radiologists with different levels of experience under the assistance of DL-UM network was also evaluated. In the external testing dataset, DL-UM outperformed DL-M in sensitivity (0.962 vs. 0.833, P = 0.016) and DL-U in specificity (0.667 vs. 0.526, P = 0.030), respectively. In the discordant BI-RADS classification subgroup, DL-UM achieved an AUC of 0.910. The diagnostic performance of four radiologists improved when collaborating with the DL-UM network, with AUCs increased from 0.674-0.772 to 0.889-0.910, specificities from 52.1%-75.0 to 81.3-87.5% and reducing unnecessary biopsies by 16.1%-24.6%, particularly for junior radiologists. Meanwhile, DL-UM outputs and heatmaps enhanced radiologists' trust and improved interobserver agreement between US and MG, with weighted kappa increased from 0.048 to 0.713 (P < 0.05). The DL-UM network, integrating complementary US and MG features, assisted radiologists in improving breast lesion diagnosis and management, potentially reducing unnecessary biopsies.

The Future of Urodynamics: Innovations, Challenges, and Possibilities.

Chew LE, Hannick JH, Woo LL, Weaver JK, Damaser MS

pubmed logopapersMay 14 2025
Urodynamic studies (UDS) are essential for evaluating lower urinary tract function but are limited by patient discomfort, lack of standardization and diagnostic variability. Advances in technology aim to address these challenges and improve diagnostic accuracy and patient comfort. AUM offers physiological assessment by allowing natural bladder filling and monitoring during daily activities. Compared to conventional UDS, AUM demonstrates higher sensitivity for detecting detrusor overactivity and underlying pathophysiology. However, it faces challenges like motion artifacts, catheter-related discomfort, and difficulty measuring continuous bladder volume. Emerging devices such as Urodynamics Monitor and UroSound offer more patient-friendly alternatives. These tools have the potential to improve diagnostic accuracy for bladder pressure and voiding metrics but remain limited and still require further validation and testing. Ultrasound-based modalities, including dynamic ultrasonography and shear wave elastography, provide real-time, noninvasive assessment of bladder structure and function. These modalities are promising but will require further development of standardized protocols. AI and machine learning models enhance diagnostic accuracy and reduce variability in UDS interpretation. Applications include detecting detrusor overactivity and distinguishing bladder outlet obstruction from detrusor underactivity. However, further validation is required for clinical adoption. Advances in AUM, wearable technologies, ultrasonography, and AI demonstrate potential for transforming UDS into a more accurate, patient-centered tool. Despite significant progress, challenges like technical complexity, standardization, and cost-effectiveness must be addressed to integrate these innovations into routine practice. Nonetheless, these technologies provide the possibility of a future of improved diagnosis and treatment of lower urinary tract dysfunction.

Synthetic Data-Enhanced Classification of Prevalent Osteoporotic Fractures Using Dual-Energy X-Ray Absorptiometry-Based Geometric and Material Parameters.

Quagliato L, Seo J, Hong J, Lee T, Chung YS

pubmed logopapersMay 14 2025
Bone fracture risk assessment for osteoporotic patients is essential for implementing early countermeasures and preventing discomfort and hospitalization. Current methodologies, such as Fracture Risk Assessment Tool (FRAX), provide a risk assessment over a 5- to 10-year period rather than evaluating the bone's current health status. The database was collected by Ajou University Medical Center from 2017 to 2021. It included 9,260 patients, aged 55 to 99, comprising 242 femur fracture (FX) cases and 9,018 non-fracture (NFX) cases. To model the association of the bone's current health status with prevalent FXs, three prediction algorithms-extreme gradient boosting (XGB), support vector machine, and multilayer perceptron-were trained using two-dimensional dual-energy X-ray absorptiometry (2D-DXA) analysis results and subsequently benchmarked. The XGB classifier, which proved most effective, was then further refined using synthetic data generated by the adaptive synthetic oversampler to balance the FX and NFX classes and enhance boundary sharpness for better classification accuracy. The XGB model trained on raw data demonstrated good prediction capabilities, with an area under the curve (AUC) of 0.78 and an F1 score of 0.71 on test cases. The inclusion of synthetic data improved classification accuracy in terms of both specificity and sensitivity, resulting in an AUC of 0.99 and an F1 score of 0.98. The proposed methodology demonstrates that current bone health can be assessed through post-processed results from 2D-DXA analysis. Moreover, it was also shown that synthetic data can help stabilize uneven databases by balancing majority and minority classes, thereby significantly improving classification performance.

A fully automatic radiomics pipeline for postoperative facial nerve function prediction of vestibular schwannoma.

Song G, Li K, Wang Z, Liu W, Xue Q, Liang J, Zhou Y, Geng H, Liu D

pubmed logopapersMay 14 2025
Vestibular schwannoma (VS) is the most prevalent intracranial schwannoma. Surgery is one of the options for the treatment of VS, with the preservation of facial nerve (FN) function being the primary objective. Therefore, postoperative FN function prediction is essential. However, achieving automation for such a method remains a challenge. In this study, we proposed a fully automatic deep learning approach based on multi-sequence magnetic resonance imaging (MRI) to predict FN function after surgery in VS patients. We first developed a segmentation network 2.5D Trans-UNet, which combined Transformer and U-Net to optimize contour segmentation for radiomic feature extraction. Next, we built a deep learning network based on the integration of 1DConvolutional Neural Network (1DCNN) and Gated Recurrent Unit (GRU) to predict postoperative FN function using the extracted features. We trained and tested the 2.5D Trans-UNet segmentation network on public and private datasets, achieving accuracies of 89.51% and 90.66%, respectively, confirming the model's strong performance. Then Feature extraction and selection were performed on the private dataset's segmentation results using 2.5D Trans-UNet. The selected features were used to train the 1DCNN-GRU network for classification. The results showed that our proposed fully automatic radiomics pipeline outperformed the traditional radiomics pipeline on the test set, achieving an accuracy of 88.64%, demonstrating its effectiveness in predicting the postoperative FN function in VS patients. Our proposed automatic method has the potential to become a valuable decision-making tool in neurosurgery, assisting neurosurgeons in making more informed decisions regarding surgical interventions and improving the treatment of VS patients.

Zero-Shot Multi-modal Large Language Model v.s. Supervised Deep Learning: A Comparative Study on CT-Based Intracranial Hemorrhage Subtyping

Yinuo Wang, Yue Zeng, Kai Chen, Cai Meng, Chao Pan, Zhouping Tang

arxiv logopreprintMay 14 2025
Introduction: Timely identification of intracranial hemorrhage (ICH) subtypes on non-contrast computed tomography is critical for prognosis prediction and therapeutic decision-making, yet remains challenging due to low contrast and blurring boundaries. This study evaluates the performance of zero-shot multi-modal large language models (MLLMs) compared to traditional deep learning methods in ICH binary classification and subtyping. Methods: We utilized a dataset provided by RSNA, comprising 192 NCCT volumes. The study compares various MLLMs, including GPT-4o, Gemini 2.0 Flash, and Claude 3.5 Sonnet V2, with conventional deep learning models, including ResNet50 and Vision Transformer. Carefully crafted prompts were used to guide MLLMs in tasks such as ICH presence, subtype classification, localization, and volume estimation. Results: The results indicate that in the ICH binary classification task, traditional deep learning models outperform MLLMs comprehensively. For subtype classification, MLLMs also exhibit inferior performance compared to traditional deep learning models, with Gemini 2.0 Flash achieving an macro-averaged precision of 0.41 and a macro-averaged F1 score of 0.31. Conclusion: While MLLMs excel in interactive capabilities, their overall accuracy in ICH subtyping is inferior to deep networks. However, MLLMs enhance interpretability through language interactions, indicating potential in medical imaging analysis. Future efforts will focus on model refinement and developing more precise MLLMs to improve performance in three-dimensional medical image processing.

DCSNet: A Lightweight Knowledge Distillation-Based Model with Explainable AI for Lung Cancer Diagnosis from Histopathological Images

Sadman Sakib Alif, Nasim Anzum Promise, Fiaz Al Abid, Aniqua Nusrat Zereen

arxiv logopreprintMay 14 2025
Lung cancer is a leading cause of cancer-related deaths globally, where early detection and accurate diagnosis are critical for improving survival rates. While deep learning, particularly convolutional neural networks (CNNs), has revolutionized medical image analysis by detecting subtle patterns indicative of early-stage lung cancer, its adoption faces challenges. These models are often computationally expensive and require significant resources, making them unsuitable for resource constrained environments. Additionally, their lack of transparency hinders trust and broader adoption in sensitive fields like healthcare. Knowledge distillation addresses these challenges by transferring knowledge from large, complex models (teachers) to smaller, lightweight models (students). We propose a knowledge distillation-based approach for lung cancer detection, incorporating explainable AI (XAI) techniques to enhance model transparency. Eight CNNs, including ResNet50, EfficientNetB0, EfficientNetB3, and VGG16, are evaluated as teacher models. We developed and trained a lightweight student model, Distilled Custom Student Network (DCSNet) using ResNet50 as the teacher. This approach not only ensures high diagnostic performance in resource-constrained settings but also addresses transparency concerns, facilitating the adoption of AI-driven diagnostic tools in healthcare.

Total radius BMD correlates with the hip and lumbar spine BMD among post-menopausal patients with fragility wrist fracture in a machine learning model.

Ruotsalainen T, Panfilov E, Thevenot J, Tiulpin A, Saarakkala S, Niinimäki J, Lehenkari P, Valkealahti M

pubmed logopapersMay 14 2025
Osteoporosis screening should be systematic in the group of over 50-year-old females with a radius fracture. We tested a phantom combined with machine learning model and studied osteoporosis-related variables. This machine learning model for screening osteoporosis using plain radiographs requires further investigation in larger cohorts to assess its potential as a replacement for DXA measurements in settings where DXA is not available. The main purpose of this study was to improve osteoporosis screening, especially in post-menopausal patients with fragility wrist fractures. The secondary objective was to increase understanding of the connection between osteoporosis and aging, as well as other risk factors. We collected data on 83 females > 50 years old with a distal radius fracture treated at Oulu University Hospital in 2019-2020. The data included basic patient information, WHO FRAX tool, blood tests, X-ray imaging of the fractured wrist, and DXA scanning of the non-fractured forearm, both hips, and the lumbar spine. Machine learning was used in combination with a custom phantom. Eighty-five percent of the study population had osteopenia or osteoporosis. Only 28.4% of patients had increased bone resorption activity measured by ICTP values. Total radius BMD correlated with other osteoporosis-related variables (age r =  - 0.494, BMI r = 0.273, FRAX osteoporotic fracture risk r =  - 0.419, FRAX hip fracture risk r =  - 0.433, hip BMD r = 0.435, and lumbar spine BMD r = 0.645), but the ultra distal (UD) radius BMD did not. Our custom phantom combined with a machine learning model showed potential for screening osteoporosis, with the class-wise accuracies for "Osteoporotic vs. osteopenic & normal bone" of 76% and 75%, respectively. We suggest osteoporosis screening for all females over 50 years old with wrist fractures. We found that the total radius BMD correlates with the central BMD. Due to the limited sample size in the phantom and machine learning parts of the study, further research is needed to make a clinically useful tool for screening osteoporosis.

Multi-Task Deep Learning for Predicting Metabolic Syndrome from Retinal Fundus Images in a Japanese Health Checkup Dataset

Itoh, T., Nishitsuka, K., Fukuma, Y., Wada, S.

medrxiv logopreprintMay 14 2025
BackgroundRetinal fundus images provide a noninvasive window into systemic health, offering opportunities for early detection of metabolic disorders such as metabolic syndrome (METS). ObjectiveThis study aimed to develop a deep learning model to predict METS from fundus images obtained during routine health checkups, leveraging a multi-task learning approach. MethodsWe retrospectively analyzed 5,000 fundus images from Japanese health checkup participants. Convolutional neural network (CNN) models were trained to classify METS status, incorporating fundus-specific data augmentation strategies and auxiliary regression tasks targeting clinical parameters such as abdominal circumference (AC). Model performance was evaluated using validation accuracy, test accuracy, and the area under the receiver operating characteristic curve (AUC). ResultsModels employing fundus-specific augmentation demonstrated more stable convergence and superior validation accuracy compared to general-purpose augmentation. Incorporating AC as an auxiliary task further enhanced performance across architectures. The final ensemble model with test-time augmentation achieved a test accuracy of 0.696 and an AUC of 0.73178. ConclusionCombining multi-task learning, fundus-specific data augmentation, and ensemble prediction substantially improves deep learning-based METS classification from fundus images. This approach may offer a practical, noninvasive screening tool for metabolic syndrome in general health checkup settings.
Page 81 of 94940 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.