Sort by:
Page 8 of 66652 results

Role of Artificial Intelligence in Lung Transplantation: Current State, Challenges, and Future Directions.

Duncheskie RP, Omari OA, Anjum F

pubmed logopapersSep 16 2025
Lung transplantation remains a critical treatment for end-stage lung diseases, yet it continues to have 1 of the lowest survival rates among solid organ transplants. Despite its life-saving potential, the field faces several challenges, including organ shortages, suboptimal donor matching, and post-transplant complications. The rapidly advancing field of artificial intelligence (AI) offers significant promise in addressing these challenges. Traditional statistical models, such as linear and logistic regression, have been used to predict post-transplant outcomes but struggle to adapt to new trends and evolving data. In contrast, machine learning algorithms can evolve with new data, offering dynamic and updated predictions. AI holds the potential to enhance lung transplantation at multiple stages. In the pre-transplant phase, AI can optimize waitlist management, refine donor selection, and improve donor-recipient matching, and enhance diagnostic imaging by harnessing vast datasets. Post-transplant, AI can help predict allograft rejection, improve immunosuppressive management, and better forecast long-term patient outcomes, including quality of life. However, the integration of AI in lung transplantation also presents challenges, including data privacy concerns, algorithmic bias, and the need for external clinical validation. This review explores the current state of AI in lung transplantation, summarizes key findings from recent studies, and discusses the potential benefits, challenges, and ethical considerations in this rapidly evolving field, highlighting future research directions.

Developing and Validation of a Multimodal-based Machine Learning Model for Diagnosis of Usual Interstitial Pneumonia: a Prospective Multicenter Study.

Wang H, Liu A, Ni Y, Wang J, Du J, Xi L, Qiang Y, Xie B, Ren Y, Wang S, Geng J, Deng Y, Huang S, Zhang R, Liu M, Dai H

pubmed logopapersSep 16 2025
Usual Interstitial Pneumonia (UIP) indicates poor prognosis, and there is significant heterogeneity in the diagnosis of UIP, necessitating an auxiliary diagnostic tool. Can a machine learning (ML) classifier using radiomics features and clinical data accurately identify UIP from patients with interstitial lung diseases (ILD)? This dataset from a prospective cohort consists of 5321 sets of high-resolution computed tomography (HRCT) images from 2901 patients with ILD (male: 63.5%, age: 61.7 ± 10.8 years) across three medical centers. Multimodal data, including whole-lung radiomics features on HRCT and demographics, smoking, lung function, and comorbidity data, were extracted. An eXtreme Gradient Boosting (XGBoost) and logistic regression were used to design a nomogram predicting UIP or not. Area under the receiver operating characteristic curve (AUC) and Cox's regression for all-cause mortality were used to assess the diagnostic performance and prognostic value of models, respectively. 5213 HRCT image datasets were divided into the training group (n=3639), the internal testing group (n=785), and the external validation group (n=789). UIP prevalence was 43.7% across the whole dataset, with 42.7% and 41.3% for the internal validation set and external validation set. The radiomics-based classifier had an AUC of 0.790 in the internal testing set and 0.786 for the external validation dataset. Integrating multimodal data improved AUCs to 0.802 and 0.794, respectively. The performance of the integration model was comparable to pulmonologist with over 10 years of experience in ILD. Within 522 patients deceased during a median follow-up period of 3.37 years, the multimodal-based ML model-predicted UIP status was associated with high all-cause mortality risk (hazard ratio: 2.52, p<0.001). The classifier combining radiomics and clinical features showed strong performance across varied UIP prevalence. This multimodal-based ML model could serve as an adjunct in the diagnosis of UIP.

SGRRG: Leveraging radiology scene graphs for improved and abnormality-aware radiology report generation.

Wang J, Zhu L, Bhalerao A, He Y

pubmed logopapersSep 15 2025
Radiology report generation (RRG) methods often lack sufficient medical knowledge to produce clinically accurate reports. A scene graph provides comprehensive information for describing objects within an image. However, automatically generated radiology scene graphs (RSG) may contain noise annotations and highly overlapping regions, posing challenges in utilizing RSG to enhance RRG. To this end, we propose Scene Graph aided RRG (SGRRG), a framework that leverages an automatically generated RSG and copes with noisy supervision problems in the RSG with a transformer-based module, effectively distilling medical knowledge in an end-to-end manner. SGRRG is composed of a dedicated scene graph encoder responsible for translating the radiography into a RSG, and a scene graph-aided decoder that takes advantage of both patch-level and region-level visual information and mitigates the noisy annotation problem in the RSG. The incorporation of both patch-level and region-level features, alongside the integration of the essential RSG construction modules, enhances our framework's flexibility and robustness, enabling it to readily exploit prior advanced RRG techniques. A fine-grained, sentence-level attention method is designed to better distill the RSG information. Additionally, we introduce two proxy tasks to enhance the model's ability to produce clinically accurate reports. Extensive experiments demonstrate that SGRRG outperforms previous state-of-the-art methods in report generation and can better capture abnormal findings. Code is available at https://github.com/Markin-Wang/SGRRG.

Accuracy of AI-Based Algorithms in Pulmonary Embolism Detection on Computed Tomographic Pulmonary Angiography: An Updated Systematic Review and Meta-analysis.

Nabipoorashrafi SA, Seyedi A, Bahri RA, Yadegar A, Shomal-Zadeh M, Mohammadi F, Afshari SA, Firoozeh N, Noroozzadeh N, Khosravi F, Asadian S, Chalian H

pubmed logopapersSep 15 2025
Several artificial intelligence (AI) algorithms have been designed for detection of pulmonary embolism (PE) using computed tomographic pulmonary angiography (CTPA). Due to the rapid development of this field and the lack of an updated meta-analysis, we aimed to systematically review the available literature about the accuracy of AI-based algorithms to diagnose PE via CTPA. We searched EMBASE, PubMed, Web of Science, and Cochrane for studies assessing the accuracy of AI-based algorithms. Studies that reported sensitivity and specificity were included. The R software was used for univariate meta-analysis and drawing summary receiver operating characteristic (sROC) curves based on bivariate analysis. To explore the source of heterogeneity, sub-group analysis was performed (PROSPERO: CRD42024543107). A total of 1722 articles were found, and after removing duplicated records, 1185 were screened. Twenty studies with 26 AI models/population met inclusion criteria, encompassing 11,950 participants. Univariate meta-analysis showed a pooled sensitivity of 91.5% (95% CI 85.5-95.2) and specificity of 84.3 (95% CI 74.9-90.6) for PE detection. Additionally, in the bivariate sROC, the pooled area under the curved (AUC) was 0.923 out of 1, indicating a very high accuracy of AI algorithms in the detection of PE. Also, subgroup meta-analysis showed geographical area as a potential source of heterogeneity where the I<sup>2</sup> for sensitivity and specificity in the Asian article subgroup were 60% and 6.9%, respectively. Findings highlight the promising role of AI in accurately diagnosing PE while also emphasizing the need for further research to address regional variations and improve generalizability.

Fractal-driven self-supervised learning enhances early-stage lung cancer GTV segmentation: a novel transfer learning framework.

Tozuka R, Kadoya N, Yasunaga A, Saito M, Komiyama T, Nemoto H, Ando H, Onishi H, Jingu K

pubmed logopapersSep 15 2025
To develop and evaluate a novel deep learning strategy for automated early-stage lung cancer gross tumor volume (GTV) segmentation, utilizing pre-training with mathematically generated non-natural fractal images. This retrospective study included 104 patients (36-91 years old; 81 males; 23 females) with peripheral early-stage non-small cell lung cancer who underwent radiotherapy at our institution from December 2017 to March 2025. First, we utilized encoders from a Convolutional Neural Network and a Vision Transformer (ViT), pre-trained with four learning strategies: from scratch, ImageNet-1K (1,000 classes of natural images), FractalDB-1K (1,000 classes of fractal images), and FractalDB-10K (10,000 classes of fractal images), with the latter three utilizing publicly available models. Second, the models were fine-tuned using CT images and physician-created contour data. Model accuracy was then evaluated using the volumetric Dice Similarity Coefficient (vDSC), surface Dice Similarity Coefficient (sDSC), and 95th percentile Hausdorff Distance (HD95) between the predicted and ground truth GTV contours, averaged across the fourfold cross-validation. Additionally, the segmentation accuracy was compared between simple and complex groups, categorized by the surface-to-volume ratio, to assess the impact of GTV shape complexity. Pre-trained with FractalDB-10K yielded the best segmentation accuracy across all metrics. For the ViT model, the vDSC, sDSC, and HD95 results were 0.800 ± 0.079, 0.732 ± 0.152, and 2.04 ± 1.59 mm for FractalDB-10K; 0.779 ± 0.093, 0.688 ± 0.156, and 2.72 ± 3.12 mm for FractalDB-1K; 0.764 ± 0.102, 0.660 ± 0.156, and 3.03 ± 3.47 mm for ImageNet-1K, respectively. In conditions FractalDB-1K and ImageNet-1K, there was no significant difference in the simple group, whereas the complex group showed a significantly higher vDSC (0.743 ± 0.095 vs 0.714 ± 0.104, p = 0.006). Pre-training with fractal structures achieved comparable or superior accuracy to ImageNet pre-training for early-stage lung cancer GTV auto-segmentation.

Challenging the Status Quo Regarding the Benefit of Chest Radiographic Screening.

Yankelevitz DF, Yip R, Henschke CI

pubmed logopapersSep 15 2025
Chest radiographic (CXR) screening is currently not recommended in the United States by any major guideline organization. Multiple randomized controlled trials done in the United States and also in Europe, with the largest being the Prostate, Lung, Colorectal and Ovarian (PLCO) trial, all failed to show a benefit and are used as evidence to support the current recommendation. Nevertheless, there is renewed interest in CXR screening, especially in low- and middle-resourced countries around the world. Reasons for this are multi-factorial, including the continued concern that those trials still may have missed a benefit, but perhaps more importantly, it is now established conclusively that finding smaller cancers is better than finding larger ones. This was the key finding in those large randomized controlled trials for CT screening. So, while CT finds cancers smaller than CXR, both clearly perform better than waiting for cancers to be larger and detected by symptom prompting. Without it being well understood that treating cancers found in the asymptomatic state by CXR, there would also be no basis for treating them when found incidentally. In addition, advances in artificial intelligence are allowing for nodules to be found earlier and more reliably with CXR than in those prior studies, and in many countries around the world, TB screening is already taking place on a large scale. This presents a major opportunity for integration with lung screening programs.

Enhancing Radiographic Disease Detection with MetaCheX, a Context-Aware Multimodal Model

Nathan He, Cody Chen

arxiv logopreprintSep 15 2025
Existing deep learning models for chest radiology often neglect patient metadata, limiting diagnostic accuracy and fairness. To bridge this gap, we introduce MetaCheX, a novel multimodal framework that integrates chest X-ray images with structured patient metadata to replicate clinical decision-making. Our approach combines a convolutional neural network (CNN) backbone with metadata processed by a multilayer perceptron through a shared classifier. Evaluated on the CheXpert Plus dataset, MetaCheX consistently outperformed radiograph-only baseline models across multiple CNN architectures. By integrating metadata, the overall diagnostic accuracy was significantly improved, measured by an increase in AUROC. The results of this study demonstrate that metadata reduces algorithmic bias and enhances model generalizability across diverse patient populations. MetaCheX advances clinical artificial intelligence toward robust, context-aware radiographic disease detection.

Multi-encoder self-adaptive hard attention network with maximum intensity projections for lung nodule segmentation.

Usman M, Rehman A, Ur Rehman A, Shahid A, Khan TM, Razzak I, Chung M, Shin YG

pubmed logopapersSep 14 2025
Accurate lung nodule segmentation is crucial for early-stage lung cancer diagnosis, as it can substantially enhance patient survival rates. Computed tomography (CT) images are widely employed for early diagnosis in lung nodule analysis. However, the heterogeneity of lung nodules, size diversity, and the complexity of the surrounding environment pose challenges for developing robust nodule segmentation methods. In this study, we propose an efficient end-to-end framework, the Multi-Encoder Self-Adaptive Hard Attention Network (MESAHA-Net), which consists of three encoding paths, an attention block, and a decoder block that assimilates CT slice patches with both forward and backward maximum intensity projection (MIP) images. This synergy affords a profound contextual understanding of lung nodules and also results in a deluge of features. To manage the profusion of features generated, we incorporate a self-adaptive hard attention mechanism guided by region of interest (ROI) masks centered on nodular regions, which MESAHA-Net autonomously produces. The network sequentially undertakes slice-by-slice segmentation, emphasizing nodule regions to produce precise three-dimensional (3D) segmentation. The proposed framework has been comprehensively evaluated on the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset, the largest publicly available dataset for lung nodule segmentation. The results demonstrate that our approach is highly robust across various lung nodule types, outperforming previous state-of-the-art techniques in terms of segmentation performance and computational complexity, making it suitable for real-time clinical implementation of artificial intelligence (AI)-driven diagnostic tools.

Disentanglement of Biological and Technical Factors via Latent Space Rotation in Clinical Imaging Improves Disease Pattern Discovery

Jeanny Pan, Philipp Seeböck, Christoph Fürböck, Svitlana Pochepnia, Jennifer Straub, Lucian Beer, Helmut Prosch, Georg Langs

arxiv logopreprintSep 14 2025
Identifying new disease-related patterns in medical imaging data with the help of machine learning enlarges the vocabulary of recognizable findings. This supports diagnostic and prognostic assessment. However, image appearance varies not only due to biological differences, but also due to imaging technology linked to vendors, scanning- or re- construction parameters. The resulting domain shifts impedes data representation learning strategies and the discovery of biologically meaningful cluster appearances. To address these challenges, we introduce an approach to actively learn the domain shift via post-hoc rotation of the data latent space, enabling disentanglement of biological and technical factors. Results on real-world heterogeneous clinical data showcase that the learned disentangled representation leads to stable clusters representing tissue-types across different acquisition settings. Cluster consistency is improved by +19.01% (ARI), +16.85% (NMI), and +12.39% (Dice) compared to the entangled representation, outperforming four state-of-the-art harmonization methods. When using the clusters to quantify tissue composition on idiopathic pulmonary fibrosis patients, the learned profiles enhance Cox survival prediction. This indicates that the proposed label-free framework facilitates biomarker discovery in multi-center routine imaging data. Code is available on GitHub https://github.com/cirmuw/latent-space-rotation-disentanglement.

Deep learning-based volume of interest imaging in helical CT for image quality improvement and radiation dose reduction.

Zhou Z, Inoue A, Cox CW, McCollough CH, Yu L

pubmed logopapersSep 13 2025
To develop a volume of interest (VOI) imaging technique in multi-detector-row helical CT to reduce radiation dose or improve image quality within the VOI. A deep-learning method based on a residual U-Net architecture, named VOI-Net, was developed to correct truncation artifacts in VOI helical CT. Three patient cases, a chest CT of interstitial lung disease and 2 abdominopelvic CT of liver tumour, were used for evaluation through simulation. VOI-Net effectively corrected truncation artifacts (root mean square error [RMSE] of 5.97 ± 2.98 Hounsfield Units [HU] for chest, 3.12 ± 1.93 HU, and 3.71 ± 1.87 HU for liver). Radiation dose was reduced by 71% without sacrificing image quality within a 10-cm diameter VOI, compared to a full scan field of view (FOV) of 50 cm. With the same total energy deposited as in a full FOV scan, image quality within the VOI matched that at 350% higher radiation dose. A radiologist confirmed improved lesion conspicuity and visibility of small linear reticulations associated with ground-glass opacity and liver tumour. Focusing radiation on the VOI and using VOI-Net in a helical scan, total radiation can be reduced or higher image quality equivalent to those at higher doses in standard full FOV scan can be achieved within the VOI. A targeted helical VOI imaging technique enabled by a deep-learning-based artifact correction method improves image quality within the VOI without increasing radiation dose.
Page 8 of 66652 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.