Sort by:
Page 77 of 1421420 results

CT derived fractional flow reserve: Part 1 - Comprehensive review of methodologies.

Shaikh K, Lozano PR, Evangelou S, Wu EH, Nurmohamed NS, Madan N, Verghese D, Shekar C, Waheed A, Siddiqui S, Kolossváry M, Almeida S, Coombes T, Suchá D, Trivedi SJ, Ihdayhid AR

pubmed logopapersJul 18 2025
Advancements in cardiac computed tomography angiography (CCTA) have enabled the extraction of physiological data from an anatomy-based imaging modality. This review outlines the key methodologies for deriving fractional flow reserve (FFR) from CCTA, with a focus on two primary methods: 1) computational fluid dynamics-based FFR (CT-FFR) and 2) plaque-derived ischemia assessment using artificial intelligence and quantitative plaque metrics. These techniques have expanded the role of CCTA beyond anatomical assessment, allowing for concurrent evaluation of coronary physiology without the need for invasive testing. This review provides an overview of the principles, workflows, and limitations of each technique and aims to inform on the current state and future direction of non-invasive coronary physiology assessment.

Diagnostic interchangeability of deep-learning based Synth-STIR images generated from T1 and T2 weighted spine images.

Li J, Xu M, Jiang B, Dong Q, Xia Y, Zhou T, Lin X, Ma Y, Jiang S, Zhang Z, Xiang L, Fan L, Liu S

pubmed logopapersJul 18 2025
To evaluate image quality and diagnostic interchangeability of synth short-tau inversion recovery (STIR) generated by deep learning in comparison with standard STIR. This prospective study recruited participants between July 2023 and August 2023. Participants were scanned with T1WI and T2WI, then generated Synth-STIR. Signal-to-noise ratios (SNR), contrast-to-noise ratios (CNR) were calculated for quantitative evaluation. Four independent, blinded radiologists performed subjective quality and lesion characteristic assessment. Wilcoxon tests were used to assess the differences in SNR, CNR, and subjective image quality. Various diagnostic findings pertinent to the spine were tested for interchangeability using the individual equivalence index (IEI). Inter-reader and intra-reader agreement and concordance were computed, and McNemar tests were performed for comprehensive evaluation. One hundred ninety-nine participants (106 male patients, mean age 46.8 ± 16.9 years) were included. Compared to standard-STIR, Synth-STIR reduces sequence scanning time by approximately 180 s, has significantly higher SNR and CNR (p < 0.001). For artifacts, noise, sharpness, and diagnostic confidence, all readers agreed that Synth-STIR was significantly better than standard-STIR (all p < 0.001). In addition, the IEI was less than 1.61%. Kappa and Kendall showed a moderate to excellent agreement in the range of 0.52-0.97. There was no significant difference in the frequencies of the major features as reported with standard-STIR and Synth-STIR (p = 0.211-1). Synth-STIR shows significantly higher SNR and CNR, and is diagnostically interchangeable with standard-STIR with a substantial overall reduction in the imaging time, thereby improving efficiency without sacrificing diagnostic value. Question Can generating STIR improve image quality while reducing spine MRI acquisition time in order to increase clinical spine MRI throughput? Findings With reduced acquisition time, Synth-STIR has significantly higher SNR and CNR than standard-STIR and can be interchangeably diagnosed with standard-STIR in detecting spinal abnormalities. Clinical relevance Our Synth-STIR provides the same high-quality images for clinical diagnosis as standard-STIR, while reducing scanning time for spine MRI protocols. Increase clinical spine MRI throughput.

SegMamba-V2: Long-range Sequential Modeling Mamba For General 3D Medical Image Segmentation.

Xing Z, Ye T, Yang Y, Cai D, Gai B, Wu XJ, Gao F, Zhu L

pubmed logopapersJul 18 2025
The Transformer architecture has demonstrated remarkable results in 3D medical image segmentation due to its capability of modeling global relationships. However, it poses a significant computational burden when processing high-dimensional medical images. Mamba, as a State Space Model (SSM), has recently emerged as a notable approach for modeling long-range dependencies in sequential data. Although a substantial amount of Mamba-based research has focused on natural language and 2D image processing, few studies explore the capability of Mamba on 3D medical images. In this paper, we propose SegMamba-V2, a novel 3D medical image segmentation model, to effectively capture long-range dependencies within whole-volume features at each scale. To achieve this goal, we first devise a hierarchical scale downsampling strategy to enhance the receptive field and mitigate information loss during downsampling. Furthermore, we design a novel tri-orientated spatial Mamba block that extends the global dependency modeling process from one plane to three orthogonal planes to improve feature representation capability. Moreover, we collect and annotate a large-scale dataset (named CRC-2000) with fine-grained categories to facilitate benchmarking evaluation in 3D colorectal cancer (CRC) segmentation. We evaluate the effectiveness of our SegMamba-V2 on CRC-2000 and three other large-scale 3D medical image segmentation datasets, covering various modalities, organs, and segmentation targets. Experimental results demonstrate that our Segmamba-V2 outperforms state-of-the-art methods by a significant margin, which indicates the universality and effectiveness of the proposed model on 3D medical image segmentation tasks. The code for SegMamba-V2 is publicly available at: https://github.com/ge-xing/SegMamba-V2.

UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography

Shravan Venkatraman, Pavan Kumar S, Rakesh Raj Madavan, Chandrakala S

arxiv logopreprintJul 18 2025
Accurate classification of computed tomography (CT) images is essential for diagnosis and treatment planning, but existing methods often struggle with the subtle and spatially diverse nature of pathological features. Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities that require focused analysis. We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis by first identifying regions of diagnostic ambiguity and then conducting detailed examination of these critical areas. Our approach employs evidential deep learning to quantify predictive uncertainty, guiding the extraction of informative patches through a non-maximum suppression mechanism that maintains spatial diversity. This progressive refinement strategy, combined with an adaptive fusion mechanism, enables UGPL to integrate both contextual information and fine-grained details. Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods, achieving improvements of 3.29%, 2.46%, and 8.08% in accuracy for kidney abnormality, lung cancer, and COVID-19 detection, respectively. Our analysis shows that the uncertainty-guided component provides substantial benefits, with performance dramatically increasing when the full progressive learning pipeline is implemented. Our code is available at: https://github.com/shravan-18/UGPL

Cardiac Function Assessment with Deep-Learning-Based Automatic Segmentation of Free-Running 4D Whole-Heart CMR

Ogier, A. C., Baup, S., Ilanjian, G., Touray, A., Rocca, A., Banus Cobo, J., Monton Quesada, I., Nicoletti, M., Ledoux, J.-B., Richiardi, J., Holtackers, R. J., Yerly, J., Stuber, M., Hullin, R., Rotzinger, D., van Heeswijk, R. B.

medrxiv logopreprintJul 17 2025
BackgroundFree-running (FR) cardiac MRI enables free-breathing ECG-free fully dynamic 5D (3D spatial+cardiac+respiration dimensions) imaging but poses significant challenges for clinical integration due to the volume and complexity of image analysis. Existing segmentation methods are tailored to 2D cine or static 3D acquisitions and cannot leverage the unique spatial-temporal wealth of FR data. PurposeTo develop and validate a deep learning (DL)-based segmentation framework for isotropic 3D+cardiac cycle FR cardiac MRI that enables accurate, fast, and clinically meaningful anatomical and functional analysis. MethodsFree-running, contrast-free bSSFP acquisitions at 1.5T and contrast-enhanced GRE acquisitions at 3T were used to reconstruct motion-resolved 5D datasets. From these, the end-expiratory respiratory phase was retained to yield fully isotropic 4D datasets. Automatic propagation of a limited set of manual segmentations was used to segment the left and right ventricular blood pool (LVB, RVB) and left ventricular myocardium (LVM) on reformatted short-axis (SAX) end-systolic (ES) and end-diastolic (ED) images. These were used to train a 3D nnU-Net model. Validation was performed using geometric metrics (Dice similarity coefficient [DSC], relative volume difference [RVD]), clinical metrics (ED and ES volumes, ejection fraction [EF]), and physiological consistency metrics (systole-diastole LVM volume mismatch and LV-RV stroke volume agreement). To assess the robustness and flexibility of the approach, we evaluated multiple additional DL training configurations such as using 4D propagation-based data augmentation to incorporate all cardiac phases into training. ResultsThe main proposed method achieved automatic segmentation within a minute, delivering high geometric accuracy and consistency (DSC: 0.94 {+/-} 0.01 [LVB], 0.86 {+/-} 0.02 [LVM], 0.92 {+/-} 0.01 [RVB]; RVD: 2.7%, 5.8%, 4.5%). Clinical LV metrics showed excellent agreement (ICC > 0.98 for EDV/ESV/EF, bias < 2 mL for EDV/ESV, < 1% for EF), while RV metrics remained clinically reliable (ICC > 0.93 for EDV/ESV/EF, bias < 1 mL for EDV/ESV, < 1% for EF) but exhibited wider limits of agreement. Training on all cardiac phases improved temporal coherence, reducing LVM volume mismatch from 4.0% to 2.6%. ConclusionThis study validates a DL-based method for fast and accurate segmentation of whole-heart free-running 4D cardiac MRI. Robust performance across diverse protocols and evaluation with complementary metrics that match state-of-the-art benchmarks supports its integration into clinical and research workflows, helping to overcome a key barrier to the broader adoption of free-running imaging.

Task based evaluation of sparse view CT reconstruction techniques for intracranial hemorrhage diagnosis using an AI observer model.

Tivnan M, Kikkert ID, Wu D, Yang K, Wolterink JM, Li Q, Gupta R

pubmed logopapersJul 17 2025
Sparse-view computed tomography (CT) holds promise for reducing radiation exposure and enabling novel system designs. Traditional reconstruction algorithms, including Filtered Backprojection (FBP) and Model-Based Iterative Reconstruction (MBIR), often produce artifacts in sparse-view data. Deep Learning Reconstruction (DLR) offers potential improvements, but task-based evaluations of DLR in sparse-view CT remain limited. This study employs an Artificial Intelligence (AI) observer to evaluate the diagnostic accuracy of FBP, MBIR, and DLR for intracranial hemorrhage detection and classification, offering a cost-effective alternative to human radiologist studies. A public brain CT dataset with labeled intracranial hemorrhages was used to train an AI observer model. Sparse-view CT data were simulated, with reconstructions performed using FBP, MBIR, and DLR. Reconstruction quality was assessed using metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS). Diagnostic utility was evaluated using Receiver Operating Characteristic (ROC) analysis and Area Under the Curve (AUC) values for One-vs-Rest and One-vs-One classification tasks. DLR outperformed FBP and MBIR in all quality metrics, demonstrating reduced noise, improved structural similarity, and fewer artifacts. The AI observer achieved the highest classification accuracy with DLR, while FBP surpassed MBIR in task-based accuracy despite inferior image quality metrics, emphasizing the value of task-based evaluations. DLR provides an effective balance of artifact reduction and anatomical detail in sparse-view CT brain imaging. This proof-of-concept study highlights AI observer models as a viable, cost-effective alternative for evaluating CT reconstruction techniques.

Opportunistic computed tomography (CT) assessment of osteoporosis in patients undergoing transcatheter aortic valve replacement (TAVR).

Paukovitsch M, Fechner T, Felbel D, Moerike J, Rottbauer W, Klömpken S, Brunner H, Kloth C, Beer M, Sekuboyina A, Buckert D, Kirschke JS, Sollmann N

pubmed logopapersJul 17 2025
CT-based opportunistic screening using artificial intelligence finds a high prevalence (43%) of osteoporosis in CT scans obtained for planning of transcatheter aortic valve replacement. Thus, opportunistic screening may be a cost-effective way to assess osteoporosis in high-risk populations. Osteoporosis is an underdiagnosed condition associated with fractures and frailty, but may be detected in routine computed tomography (CT) scans. Volumetric bone mineral density (vBMD) was measured in clinical routine thoraco-abdominal CT scans of 207 patients for planning of transcatheter aortic valve replacement (TAVR) using an artificial intelligence (AI)-based algorithm. 43% of patients had osteoporosis (vBMD < 80 mg/cm<sup>3</sup> L1-L3) and were elderly (83.0 {interquartile range [IQR]: 78.0-85.5} vs. 79.0 {IQR: 71.8-84.0} years, p < 0.001), more often female (55.1 vs. 28.8%, p < 0.001), and had a higher Society of Thoracic Surgeon's score for mortality (3.0 {IQR:1.8-4.6} vs. 2.1 {IQR: 1.4-3.2}%, p < 0.001). In addition to lumbar vBMD (58.2 ± 14.7 vs. 106 ± 21.4 mg/cm<sup>3</sup>, p < 0.001), thoracic vBMD (79.5 ± 17.9 vs. 127.4 ± 26.0 mg/cm<sup>3</sup>, p < 0.001) was also significantly reduced in these patients and showed high diagnostic accuracy for osteoporosis assessment (area under curve: 0.96, p < 0.001). Osteoporotic patients were significantly more often at risk for falls (40.4 vs. 22.9%, p = 0.007) and required help in activities of daily life (ADL) more frequently (48.3 vs. 33.1%, p = 0.026), while direct-to-home discharges were fewer (88.8 vs. 96.6%, p = 0.026). In-hospital bleeding complications (3.4 vs. 5.1%), stroke (1.1 vs. 2.5%), and death (1.1 vs. 0.8%) were equally low, while in-hospital device success was equally high (94.4 vs. 94.9%, p > 0.05 for all comparisons). However, one-year probability of survival was significantly lower (84.0 vs. 98.2%, log-rank p < 0.01). Applying an AI-based algorithm to TAVR planning CT scans can reveal a high rate of 43% patients having osteoporosis. Osteoporosis may represent a marker related to frailty and worsened outcome in TAVR patients.

DiffOSeg: Omni Medical Image Segmentation via Multi-Expert Collaboration Diffusion Model

Han Zhang, Xiangde Luo, Yong Chen, Kang Li

arxiv logopreprintJul 17 2025
Annotation variability remains a substantial challenge in medical image segmentation, stemming from ambiguous imaging boundaries and diverse clinical expertise. Traditional deep learning methods producing single deterministic segmentation predictions often fail to capture these annotator biases. Although recent studies have explored multi-rater segmentation, existing methods typically focus on a single perspective -- either generating a probabilistic ``gold standard'' consensus or preserving expert-specific preferences -- thus struggling to provide a more omni view. In this study, we propose DiffOSeg, a two-stage diffusion-based framework, which aims to simultaneously achieve both consensus-driven (combining all experts' opinions) and preference-driven (reflecting experts' individual assessments) segmentation. Stage I establishes population consensus through a probabilistic consensus strategy, while Stage II captures expert-specific preference via adaptive prompts. Demonstrated on two public datasets (LIDC-IDRI and NPC-170), our model outperforms existing state-of-the-art methods across all evaluated metrics. Source code is available at https://github.com/string-ellipses/DiffOSeg .

FSS-ULivR: a clinically-inspired few-shot segmentation framework for liver imaging using unified representations and attention mechanisms.

Debnath RK, Rahman MA, Azam S, Zhang Y, Jonkman M

pubmed logopapersJul 17 2025
Precise liver segmentation is critical for accurate diagnosis and effective treatment planning, serving as a foundation for medical image analysis. However, existing methods struggle with limited labeled data, poor generalizability, and insufficient integration of anatomical and clinical features. To address these limitations, we propose a novel Few-Shot Segmentation model with Unified Liver Representation (FSS-ULivR), which employs a ResNet-based encoder enhanced with Squeeze-and-Excitation modules to improve feature learning, an enhanced prototype module that utilizes a transformer block and channel attention for dynamic feature refinement, and a decoder with improved attention gates and residual refinement strategies to recover spatial details from encoder skip connections. Through extensive experiments, our FSS-ULivR model achieved an outstanding Dice coefficient of 98.94%, Intersection over Union (IoU) of 97.44% and a specificity of 93.78% on the Liver Tumor Segmentation Challenge dataset. Cross-dataset evaluations further demonstrated its generalizability, with Dice scores of 95.43%, 92.98%, 90.72%, and 94.05% on 3DIRCADB01, Colorectal Liver Metastases, Computed Tomography Organs (CT-ORG), and Medical Segmentation Decathlon Task 3: Liver datasets, respectively. In multi-organ segmentation on CT-ORG, it delivered Dice scores ranging from 85.93% to 94.26% across bladder, bones, kidneys, and lungs. For brain tumor segmentation on BraTS 2019 and 2020 datasets, average Dice scores were 90.64% and 89.36% across whole tumor, tumor core, and enhancing tumor regions. These results emphasize the clinical importance of our model by demonstrating its ability to deliver precise and reliable segmentation through artificial intelligence techniques and engineering solutions, even in scenarios with scarce annotated data.

Early Vascular Aging Determined by 3-Dimensional Aortic Geometry: Genetic Determinants and Clinical Consequences.

Beeche C, Zhao B, Tavolinejad H, Pourmussa B, Kim J, Duda J, Gee J, Witschey WR, Chirinos JA

pubmed logopapersJul 17 2025
Vascular aging is an important phenotype characterized by structural and geometric remodeling. Some individuals exhibit supernormal vascular aging, associated with improved cardiovascular outcomes; others experience early vascular aging, linked to adverse cardiovascular outcomes. The aorta is the artery that exhibits the most prominent age-related changes; however, the biological mechanisms underlying aortic aging, its genetic architecture, and its relationship with cardiovascular structure, function, and disease states remain poorly understood. We developed sex-specific models to quantify aortic age on the basis of aortic geometric phenotypes derived from 3-dimensional tomographic imaging data in 2 large biobanks: the UK Biobank and the Penn Medicine BioBank. Convolutional neural ne2rk-assisted 3-dimensional segmentation of the aorta was performed in 56 104 magnetic resonance imaging scans in the UK Biobank and 6757 computed tomography scans in the Penn Medicine BioBank. Aortic vascular age index (AVAI) was calculated as the difference between the vascular age predicted from geometric phenotypes and the chronological age, expressed as a percent of chronological age. We assessed associations with cardiovascular structure and function using multivariate linear regression and examined the genetic architecture of AVAI through genome-wide association studies, followed by Mendelian randomization to assess causal associations. We also constructed a polygenic risk score for AVAI. AVAI displayed numerous associations with cardiac structure and function, including increased left ventricular mass (standardized β=0.144 [95% CI, 0.138, 0.149]; <i>P</i><0.0001), wall thickness (standardized β=0.061 [95% CI, 0.054, 0.068]; <i>P</i><0.0001), and left atrial volume maximum (standardized β=0.060 [95% CI, 0.050, 0.069]; <i>P</i><0.0001). AVAI exhibited high genetic heritability (<i>h</i><sup>2</sup>=40.24%). We identified 54 independent genetic loci (<i>P</i><5×10<sup>-</sup><sup>8</sup>) associated with AVAI, which further exhibited gene-level associations with the fibrillin-1 (<i>FBN1</i>) and elastin (<i>ELN1</i>) genes. Mendelian randomization supported causal associations between AVAI and atrial fibrillation, vascular dementia, aortic aneurysm, and aortic dissection. A polygenic risk score for AVAI was associated with an increased prevalence of atrial fibrillation, hypertension, aortic aneurysm, and aortic dissection. Early aortic aging is significantly associated with adverse cardiac remodeling and important cardiovascular disease states. AVAI exhibits a polygenic, highly heritable genetic architecture. Mendelian randomization analyses support a causal association between AVAI and cardiovascular diseases, including atrial fibrillation, vascular dementia, aortic aneurysms, and aortic dissection.
Page 77 of 1421420 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.