Diagnostic interchangeability of deep-learning based Synth-STIR images generated from T1 and T2 weighted spine images.
Authors
Affiliations (5)
Affiliations (5)
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, The People's Republic of China.
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, The People's Republic of China.
- Department of Radiology, University of Michigan Taubman Center, Ann Arbor, MI, USA.
- Shentou Medical Inc, Shanghai, The People's Republic of China.
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, The People's Republic of China. [email protected].
Abstract
To evaluate image quality and diagnostic interchangeability of synth short-tau inversion recovery (STIR) generated by deep learning in comparison with standard STIR. This prospective study recruited participants between July 2023 and August 2023. Participants were scanned with T1WI and T2WI, then generated Synth-STIR. Signal-to-noise ratios (SNR), contrast-to-noise ratios (CNR) were calculated for quantitative evaluation. Four independent, blinded radiologists performed subjective quality and lesion characteristic assessment. Wilcoxon tests were used to assess the differences in SNR, CNR, and subjective image quality. Various diagnostic findings pertinent to the spine were tested for interchangeability using the individual equivalence index (IEI). Inter-reader and intra-reader agreement and concordance were computed, and McNemar tests were performed for comprehensive evaluation. One hundred ninety-nine participants (106 male patients, mean age 46.8 ± 16.9 years) were included. Compared to standard-STIR, Synth-STIR reduces sequence scanning time by approximately 180 s, has significantly higher SNR and CNR (p < 0.001). For artifacts, noise, sharpness, and diagnostic confidence, all readers agreed that Synth-STIR was significantly better than standard-STIR (all p < 0.001). In addition, the IEI was less than 1.61%. Kappa and Kendall showed a moderate to excellent agreement in the range of 0.52-0.97. There was no significant difference in the frequencies of the major features as reported with standard-STIR and Synth-STIR (p = 0.211-1). Synth-STIR shows significantly higher SNR and CNR, and is diagnostically interchangeable with standard-STIR with a substantial overall reduction in the imaging time, thereby improving efficiency without sacrificing diagnostic value. Question Can generating STIR improve image quality while reducing spine MRI acquisition time in order to increase clinical spine MRI throughput? Findings With reduced acquisition time, Synth-STIR has significantly higher SNR and CNR than standard-STIR and can be interchangeably diagnosed with standard-STIR in detecting spinal abnormalities. Clinical relevance Our Synth-STIR provides the same high-quality images for clinical diagnosis as standard-STIR, while reducing scanning time for spine MRI protocols. Increase clinical spine MRI throughput.