Sort by:
Page 71 of 2372364 results

Comparative evaluation of CAM methods for enhancing explainability in veterinary radiography.

Dusza P, Banzato T, Burti S, Bendazzoli M, Müller H, Wodzinski M

pubmed logopapersAug 13 2025
Explainable Artificial Intelligence (XAI) encompasses a broad spectrum of methods that aim to enhance the transparency of deep learning models, with Class Activation Mapping (CAM) methods widely used for visual interpretability. However, systematic evaluations of these methods in veterinary radiography remain scarce. This study presents a comparative analysis of eleven CAM methods, including GradCAM, XGradCAM, ScoreCAM, and EigenCAM, on a dataset of 7362 canine and feline X-ray images. A ResNet18 model was chosen based on the specificity of the dataset and preliminary results where it outperformed other models. Quantitative and qualitative evaluations were performed to determine how well each CAM method produced interpretable heatmaps relevant to clinical decision-making. Among the techniques evaluated, EigenGradCAM achieved the highest mean score and standard deviation (SD) of 2.571 (SD = 1.256), closely followed by EigenCAM at 2.519 (SD = 1.228) and GradCAM++ at 2.512 (SD = 1.277), with methods such as FullGrad and XGradCAM achieving worst scores of 2.000 (SD = 1.300) and 1.858 (SD = 1.198) respectively. Despite variations in saliency visualization, no single method universally improved veterinarians' diagnostic confidence. While certain CAM methods provide better visual cues for some pathologies, they generally offered limited explainability and didn't substantially improve veterinarians' diagnostic confidence.

Multimodal ensemble machine learning predicts neurological outcome within three hours after out of hospital cardiac arrest.

Kawai Y, Yamamoto K, Tsuruta K, Miyazaki K, Asai H, Fukushima H

pubmed logopapersAug 13 2025
This study aimed to determine if an ensemble (stacking) model that integrates three independently developed base models can reliably predict patients' neurological outcomes following out-of-hospital cardiac arrest (OHCA) within 3 h of arrival and outperform each individual model. This retrospective study included patients with OHCA (≥ 18 years) admitted directly to Nara Medical University between April 2015 and March 2024 who remained comatose for ≥ 3 h after arrival and had suitable head computed tomography (CT) images. The area under the receiver operating characteristic curve (AUC) and Briers scores were used to evaluate the performance of four models (resuscitation-related background OHCA score factors, bilateral pupil diameter, single-slice head CT within 3 h of arrival, and an ensemble stacked model combining these three models) in predicting favourable neurological outcomes at hospital discharge or 1 month, as defined by a Cerebral Performance Category scale of 1-2. Among 533 patients, 82 (15%) had favourable outcomes. The OHCA, pupil, and head CT models yielded AUCs of 0.76, 0.65, and 0.68 with Brier scores of 0.11, 0.13, and 0.12, respectively. The ensemble model outperformed the other models (AUC, 0.82; Brier score, 0.10), thereby supporting its application for early clinical decision-making and optimising resource allocation.

Machine Learning-Driven Radiomic Profiling of Thalamus-Amygdala Nuclei for Prediction of Postoperative Delirium After STN-DBS in Parkinson's Disease Patients: A Pilot Study.

Radziunas A, Davidavicius G, Reinyte K, Pranckeviciene A, Fedaravicius A, Kucinskas V, Laucius O, Tamasauskas A, Deltuva V, Saudargiene A

pubmed logopapersAug 13 2025
Postoperative delirium is a common complication following sub-thalamic nucleus deep brain stimulation surgery in Parkinson's disease patients. Postoperative delirium has been shown to prolong hospital stays, harm cognitive function, and negatively impact outcomes. Utilizing radiomics as a predictive tool for identifying patients at risk of delirium is a novel and personalized approach. This pilot study analyzed preoperative T1-weighted and T2-weighted magnetic resonance images from 34 Parkinson's disease patients, which were used to segment the thalamus, amygdala, and hippocampus, resulting in 10,680 extracted radiomic features. Feature selection using the minimum redundancy maximal relevance method identified the 20 most informative features, which were input into eight different machine learning algorithms. A high predictive accuracy of postoperative delirium was achieved by applying regularized binary logistic regression and linear discriminant analysis and using 10 most informative radiomic features. Regularized logistic regression resulted in 96.97% (±6.20) balanced accuracy, 99.5% (±4.97) sensitivity, 94.43% (±10.70) specificity, and area under the receiver operating characteristic curve of 0.97 (±0.06). Linear discriminant analysis showed 98.42% (±6.57) balanced accuracy, 98.00% (±9.80) sensitivity, 98.83% (±4.63) specificity, and area under the receiver operating characteristic curve of 0.98 (±0.07). The feed-forward neural network also demonstrated strong predictive capacity, achieving 96.17% (±10.40) balanced accuracy, 94.5% (±19.87) sensitivity, 97.83% (±7.87) specificity, and an area under the receiver operating characteristic curve of 0.96 (±0.10). However, when the feature set was extended to 20 features, both logistic regression and linear discriminant analysis showed reduced performance, while the feed-forward neural network achieved the highest predictive accuracy of 99.28% (±2.71), with 100.0% (±0.00) sensitivity, 98.57% (±5.42) specificity, and an area under the receiver operating characteristic curve of 0.99 (±0.03). Selected radiomic features might indicate network dysfunction between thalamic laterodorsal, reuniens medial ventral, and amygdala basal nuclei with hippocampus cornu ammonis 4 in these patients. This finding expands previous research suggesting the importance of the thalamic-hippocampal-amygdala network for postoperative delirium due to alterations in neuronal activity.

A stacking ensemble framework integrating radiomics and deep learning for prognostic prediction in head and neck cancer.

Wang B, Liu J, Zhang X, Lin J, Li S, Wang Z, Cao Z, Wen D, Liu T, Ramli HRH, Harith HH, Hasan WZW, Dong X

pubmed logopapersAug 13 2025
Radiomics models frequently face challenges related to reproducibility and robustness. To address these issues, we propose a multimodal, multi-model fusion framework utilizing stacking ensemble learning for prognostic prediction in head and neck cancer (HNC). This approach seeks to improve the accuracy and reliability of survival predictions. A total of 806 cases from nine centers were collected; 143 cases from two centers were assigned as the external validation cohort, while the remaining 663 were stratified and randomly split into training (n = 530) and internal validation (n = 133) sets. Radiomics features were extracted according to IBSI standards, and deep learning features were obtained using a 3D DenseNet-121 model. Following feature selection, the selected features were input into Cox, SVM, RSF, DeepCox, and DeepSurv models. A stacking fusion strategy was employed to develop the prognostic model. Model performance was evaluated using Kaplan-Meier survival curves and time-dependent ROC curves. On the external validation set, the model using combined PET and CT radiomics features achieved superior performance compared to single-modality models, with the RSF model obtaining the highest concordance index (C-index) of 0.7302. When using deep features extracted by 3D DenseNet-121, the PET + CT-based models demonstrated significantly improved prognostic accuracy, with Deepsurv and DeepCox achieving C-indices of 0.9217 and 0.9208, respectively. In stacking models, the PET + CT model using only radiomics features reached a C-index of 0.7324, while the deep feature-based stacking model achieved 0.9319. The best performance was obtained by the multi-feature fusion model, which integrated both radiomics and deep learning features from PET and CT, yielding a C-index of 0.9345. Kaplan-Meier survival analysis further confirmed the fusion model's ability to distinguish between high-risk and low-risk groups. The stacking-based ensemble model demonstrates superior performance compared to individual machine learning models, markedly improving the robustness of prognostic predictions.

Explainable AI Technique in Lung Cancer Detection Using Convolutional Neural Networks

Nishan Rai, Sujan Khatri, Devendra Risal

arxiv logopreprintAug 13 2025
Early detection of lung cancer is critical to improving survival outcomes. We present a deep learning framework for automated lung cancer screening from chest computed tomography (CT) images with integrated explainability. Using the IQ-OTH/NCCD dataset (1,197 scans across Normal, Benign, and Malignant classes), we evaluate a custom convolutional neural network (CNN) and three fine-tuned transfer learning backbones: DenseNet121, ResNet152, and VGG19. Models are trained with cost-sensitive learning to mitigate class imbalance and evaluated via accuracy, precision, recall, F1-score, and ROC-AUC. While ResNet152 achieved the highest accuracy (97.3%), DenseNet121 provided the best overall balance in precision, recall, and F1 (up to 92%, 90%, 91%, respectively). We further apply Shapley Additive Explanations (SHAP) to visualize evidence contributing to predictions, improving clinical transparency. Results indicate that CNN-based approaches augmented with explainability can provide fast, accurate, and interpretable support for lung cancer screening, particularly in resource-limited settings.

Ultrasonic Texture Analysis for Predicting Acute Myocardial Infarction.

Jamthikar AD, Hathaway QA, Maganti K, Hamirani Y, Bokhari S, Yanamala N, Sengupta PP

pubmed logopapersAug 13 2025
Acute myocardial infarction (MI) alters cardiomyocyte geometry and architecture, leading to changes in the acoustic properties of the myocardium. This study examines ultrasomics-a novel cardiac ultrasound-based radiomics technique to extract high-throughput pixel-level information from images-for identifying ultrasonic texture and morphologic changes associated with infarcted myocardium. We included 684 participants from multisource data: a) a retrospective single-center matched case-control dataset, b) a prospective multicenter matched clinical trial dataset, and c) an open-source international and multivendor dataset. Handcrafted and deep transfer learning-based ultrasomics features from 2- and 4-chamber echocardiographic views were used to train machine learning (ML) models with the use of leave-one-source-out cross-validation for external validation. The ML model showed a higher AUC than transfer learning-based deep features in identifying MI [AUCs: 0.87 [95% CI: 0.84-0.89] vs 0.74 [95% CI: 0.70-0.77]; P < 0.0001]. ML probability was an independent predictor of MI even after adjusting for conventional echocardiographic parameters [adjusted OR: 1.03 [95% CI: 1.01-1.05]; P < 0.0001]. ML probability showed diagnostic value in differentiating acute MI, even in the presence of myocardial dysfunction (averaged longitudinal strain [LS] <16%) (AUC: 0.84 [95% CI: 0.77-0.89]). In addition, combining averaged LS with ML probability significantly improved predictive performance compared with LS alone (AUCs: 0.86 [95% CI: 0.80-0.91] vs 0.80 [95% CI: 0.72-0.87]; P = 0.02). Visualization of ultrasomics features with the use of a Manhattan plot discriminated infarcted and noninfarcted segments (P < 0.001) and facilitated parametric visualization of infarcted myocardium. This study demonstrates the potential of cardiac ultrasomics to distinguish healthy from infarcted myocardium and highlights the need for validation in diverse populations to define its role and incremental value in myocardial tissue characterization beyond conventional echocardiography.

Applications of artificial intelligence in liver cancer: A scoping review.

Chierici A, Lareyre F, Iannelli A, Salucki B, Goffart S, Guzzi L, Poggi E, Delingette H, Raffort J

pubmed logopapersAug 13 2025
This review explores the application of Artificial Intelligence (AI) in managing primary liver cancer, focusing on recent advancements. AI, particularly machine learning (ML) and deep learning (DL), shows potential in improving screening, diagnosis, treatment planning, efficacy assessment, prognosis prediction, and follow-up-crucial elements given the high mortality of liver cancer. A systematic search was conducted in the PubMed, Scopus, Embase, and Web of Science databases, focusing on original research published until June 2024 on AI's clinical applications in liver cancer. Studies not relevant or lacking clinical evaluation were excluded. Out of 13,122 screened articles, 62 were selected for full review. The studies highlight significant improvements in detecting hepatocellular carcinoma and intrahepatic cholangiocarcinoma through AI. DL models show high sensitivity and specificity, particularly in early detection. In diagnosis, AI models using CT and MRI data improve precision in distinguishing benign from malignant lesions through multimodal data integration. Recent AI models outperform earlier non-neural network versions, though a gap remains between development and clinical implementation. Many models lack thorough clinical applicability assessments and external validation. AI integration in primary liver cancer management is promising but requires rigorous development and validation practices to enhance clinical outcomes fully.

Multi-organ AI Endophenotypes Chart the Heterogeneity of Pan-disease in the Brain, Eye, and Heart

Consortium, T. M., Boquet-Pujadas, A., anagnostakis, f., Yang, Z., Tian, Y. E., duggan, m., erus, g., srinivasan, d., Joynes, C., Bai, W., patel, p., Walker, K. A., Zalesky, A., davatzikos, c., WEN, J.

medrxiv logopreprintAug 13 2025
Disease heterogeneity and commonality pose significant challenges to precision medicine, as traditional approaches frequently focus on single disease entities and overlook shared mechanisms across conditions1. Inspired by pan-cancer2 and multi-organ research3, we introduce the concept of "pan-disease" to investigate the heterogeneity and shared etiology in brain, eye, and heart diseases. Leveraging individual-level data from 129,340 participants, as well as summary-level data from the MULTI consortium, we applied a weakly-supervised deep learning model (Surreal-GAN4,5) to multi-organ imaging, genetic, proteomic, and RNA-seq data, identifying 11 AI-derived biomarkers - called Multi-organ AI Endophenotypes (MAEs) - for the brain (Brain 1-6), eye (Eye 1-3), and heart (Heart 1-2), respectively. We found Brain 3 to be a risk factor for Alzheimers disease (AD) progression and mortality, whereas Brain 5 was protective against AD progression. Crucially, in data from an anti-amyloid AD drug (solanezumab6), heterogeneity in cognitive decline trajectories was observed across treatment groups. At week 240, patients with lower brain 1-3 expression had slower cognitive decline, whereas patients with higher expression had faster cognitive decline. A multi-layer causal pathway pinpointed Brain 1 as a mediational endophenotype7 linking the FLRT2 protein to migraine, exemplifying novel therapeutic targets and pathways. Additionally, genes associated with Eye 1 and Eye 3 were enriched in cancer drug-related gene sets with causal links to specific cancer types and proteins. Finally, Heart 1 and Heart 2 had the highest mortality risk and unique medication history profiles, with Heart 1 showing favorable responses to antihypertensive medications and Heart 2 to digoxin treatment. The 11 MAEs provide novel AI dimensional representations for precision medicine and highlight the potential of AI-driven patient stratification for disease risk monitoring, clinical trials, and drug discovery.

[Development of a machine learning-based diagnostic model for T-shaped uterus using transvaginal 3D ultrasound quantitative parameters].

Li SJ, Wang Y, Huang R, Yang LM, Lyu XD, Huang XW, Peng XB, Song DM, Ma N, Xiao Y, Zhou QY, Guo Y, Liang N, Liu S, Gao K, Yan YN, Xia EL

pubmed logopapersAug 12 2025
<b>Objective:</b> To develop a machine learning diagnostic model for T-shaped uterus based on quantitative parameters from 3D transvaginal ultrasound. <b>Methods:</b> A retrospective cross-sectional study was conducted, recruiting 304 patients who visited the hysteroscopy centre of Fuxing Hospital, Beijing, China, between July 2021 and June 2024 for reasons such as "infertility or recurrent pregnancy loss" and other adverse obstetric histories. Twelve experts, including seven clinicians and five sonographers, from Fuxing Hospital and Beijing Obstetrics and Gynecology Hospital of Capital Medical University, Peking University People's Hospital, and Beijing Hospital, independently and anonymously assessed the diagnosis of T-shaped uterus using a modified Delphi method. Based on the consensus results, 56 cases were classified into the T-shaped uterus group and 248 cases into the non-T-shaped uterus group. A total of 7 clinical features and 14 sonographic features were initially included. Features demonstrating significant diagnostic impact were selected using 10-fold cross-validated LASSO (Least Absolute Shrinkage and Selection Operator) regression. Four machine learning algorithms [logistic regression (LR), decision tree (DT), random forest (RF), and support vector machine (SVM)] were subsequently implemented to develop T-shaped uterus diagnostic models. Using the Python random module, the patient dataset was randomly divided into five subsets, each maintaining the original class distribution (T-shaped uterus: non-T-shaped uterus ≈ 1∶4) and a balanced number of samples between the two categories. Five-fold cross-validation was performed, with four subsets used for training and one for validation in each round, to enhance the reliability of model evaluation. Model performance was rigorously assessed using established metrics: area under the curve (AUC) of receiver operator characteristic (ROC) curve, sensitivity, specificity, precision, and F1-score. In the RF model, feature importance was assessed by the mean decrease in Gini impurity attributed to each variable. <b>Results:</b> A total of 304 patients had a mean age of (35±4) years, and the age of the T-shaped uterus group was (35±5) years; the age of the non-T-shaped uterus group was (34±4) years.. Eight features with non-zero coefficients were selected by LASSO regression, including average lateral wall indentation width, average lateral wall indentation angle, upper cavity depth, endometrial thickness, uterine cavity area, cavity width at level of lateral wall indentation, angle formed by the bilateral lateral walls, and average cornual angle (coefficient: 0.125, -0.064,-0.037,-0.030,-0.026,-0.025,-0.025 and -0.024, respectively). The RF model showed the best diagnostic performance: in training set, AUC was 0.986 (95%<i>CI</i>: 0.980-0.992), sensitivity was 0.978, specificity 0.946, precision 0.802, and F1-score 0.881; in testing set, AUC was 0.948 (95%<i>CI</i>: 0.911-0.985), sensitivity was 0.873, specificity 0.919, precision 0.716, and F1-score 0.784. RF model feature importance analysis revealed that average lateral wall indentation width, upper cavity depth, and average lateral wall indentation angle were the top three features (over 65% in total), playing a decisive role in model prediction. <b>Conclusion:</b> The machine learning models developed in this study, particularly the RF model, are promising for the diagnosis of T-shaped uterus, offering new perspectives and technical support for clinical practice.

Current imaging applications, radiomics, and machine learning modalities of CNS demyelinating disorders and its mimickers.

Alam Z, Maddali A, Patel S, Weber N, Al Rikabi S, Thiemann D, Desai K, Monoky D

pubmed logopapersAug 12 2025
Distinguishing among neuroinflammatory demyelinating diseases of the central nervous system can present a significant diagnostic challenge due to substantial overlap in clinical presentations and imaging features. Collaboration between specialists, novel antibody testing, and dedicated magnetic resonance imaging protocols have helped to narrow the diagnostic gap, but challenging cases remain. Machine learning algorithms have proven to be able to identify subtle patterns that escape even the most experienced human eye. Indeed, machine learning and the subfield of radiomics have demonstrated exponential growth and improvement in diagnosis capacity within the past decade. The sometimes daunting diagnostic overlap of various demyelinating processes thus provides a unique opportunity: can the elite pattern recognition powers of machine learning close the gap in making the correct diagnosis? This review specifically focuses on neuroinflammatory demyelinating diseases, exploring the role of artificial intelligence in the detection, diagnosis, and differentiation of the most common pathologies: multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), acute disseminated encephalomyelitis (ADEM), Sjogren's syndrome, MOG antibody-associated disorder (MOGAD), and neuropsychiatric systemic lupus erythematosus (NPSLE). Understanding how these tools enhance diagnostic precision may lead to earlier intervention, improved outcomes, and optimized management strategies.
Page 71 of 2372364 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.