Deep learning without borders: recent advances in ultrasound image classification for liver diseases diagnosis.
Authors
Affiliations (1)
Affiliations (1)
- Department of Medical Radiation Engineering SR C, Islamic Azad University, Tehran, Iran.
Abstract
Liver diseases are among the top global health burdens. Recently, there has been an increasing significance of diagnostics without discomfort to the patient; among them, ultrasound is the most used. Deep learning, in particular convolutional neural networks, has revolutionized the classification of liver diseases by automatically performing some specific analyses of difficult images. This review summarizes the progress that has been made in deep learning techniques for the classification of liver diseases using ultrasound imaging. It evaluates various models from CNNs to their hybrid versions, such as CNN-Transformer, for detecting fatty liver, fibrosis, and liver cancer, among others. Several challenges in the generalization of data and models across a different clinical environment are also discussed. Deep learning has great prospects for automatic diagnosis of liver diseases. Most of the models have performed with high accuracy in different clinical studies. Despite this promise, challenges relating to generalization have remained. Future hardware developments and access to quality clinical data continue to further improve the performance of these models and ensure their vital role in the diagnosis of liver diseases.