Sort by:
Page 71 of 1431421 results

XVertNet: Unsupervised Contrast Enhancement of Vertebral Structures with Dynamic Self-Tuning Guidance and Multi-Stage Analysis.

Eidlin E, Hoogi A, Rozen H, Badarne M, Netanyahu NS

pubmed logopapersJul 25 2025
Chest X-ray is one of the main diagnostic tools in emergency medicine, yet its limited ability to capture fine anatomical details can result in missed or delayed diagnoses. To address this, we introduce XVertNet, a novel deep-learning framework designed to enhance vertebral structure visualization in X-ray images significantly. Our framework introduces two key innovations: (1) an unsupervised learning architecture that eliminates reliance on manually labeled training data-a persistent bottleneck in medical imaging, and (2) a dynamic self-tuned internal guidance mechanism featuring an adaptive feedback loop for real-time image optimization. Extensive validation across four major public datasets revealed that XVertNet outperforms state-of-the-art enhancement methods, as demonstrated by improvements in evaluation measures such as entropy, the Tenengrad criterion, LPC-SI, TMQI, and PIQE. Furthermore, clinical validation conducted by two board-certified clinicians confirmed that the enhanced images enabled more sensitive examination of vertebral structural changes. The unsupervised nature of XVertNet facilitates immediate clinical deployment without requiring additional training overhead. This innovation represents a transformative advancement in emergency radiology, providing a scalable and time-efficient solution to enhance diagnostic accuracy in high-pressure clinical environments.

PerioDet: Large-Scale Panoramic Radiograph Benchmark for Clinical-Oriented Apical Periodontitis Detection

Xiaocheng Fang, Jieyi Cai, Huanyu Liu, Chengju Zhou, Minhua Lu, Bingzhi Chen

arxiv logopreprintJul 25 2025
Apical periodontitis is a prevalent oral pathology that presents significant public health challenges. Despite advances in automated diagnostic systems across various medical fields, the development of Computer-Aided Diagnosis (CAD) applications for apical periodontitis is still constrained by the lack of a large-scale, high-quality annotated dataset. To address this issue, we release a large-scale panoramic radiograph benchmark called "PerioXrays", comprising 3,673 images and 5,662 meticulously annotated instances of apical periodontitis. To the best of our knowledge, this is the first benchmark dataset for automated apical periodontitis diagnosis. This paper further proposes a clinical-oriented apical periodontitis detection (PerioDet) paradigm, which jointly incorporates Background-Denoising Attention (BDA) and IoU-Dynamic Calibration (IDC) mechanisms to address the challenges posed by background noise and small targets in automated detection. Extensive experiments on the PerioXrays dataset demonstrate the superiority of PerioDet in advancing automated apical periodontitis detection. Additionally, a well-designed human-computer collaborative experiment underscores the clinical applicability of our method as an auxiliary diagnostic tool for professional dentists.

Enhancing the Characterization of Dural Tears on Photon Counting CT Myelography: An Analysis of Reconstruction Techniques.

Madhavan AA, Kranz PG, Kodet ML, Yu L, Zhou Z, Amrhein TJ

pubmed logopapersJul 25 2025
Photon counting detector CT myelography is an effective modality for the localization of spinal CSF leaks. The initial studies describing this technique employed a relatively smooth Br56 kernel. However, subsequent studies have demonstrated that the use of the sharpest quantitative kernel on photon counting CT (Qr89), particularly when denoised with techniques such as quantum iterative reconstruction or convolutional neural networks, enhances detection of CSF-venous fistulas. In this clinical report, we sought to determine whether the Qr89 kernel has utility in patients with dural tears, the other main type of spinal CSF leak. We performed a retrospective review of patients with dural tears diagnosed on photon counting CT myelography, comparing Br56, Qr89 denoised with quantum iterative reconstruction, and Qr89 denoised with a trained convolutional neural network. We specifically assessed spatial resolution, noise level, and diagnostic confidence in eight such cases, finding that the sharper Qr89 kernel outperformed the smoother Br56 kernel. This was particularly true when Qr89 was denoised using a convolutional neural network. Furthermore, in two cases, the dural tear was only seen on the Qr89 reconstructions and missed on the Br56 kernel. Overall, our study demonstrates the potential value of further optimizing post-processing techniques for photon counting CT myelography aimed at localizing dural tears.ABBREVIATIONS: CNN = convolutional neural network; CVF = CSF-venous fistula; DSM = digital subtraction myelography; EID = energy integrating detector; PCD = photon counting detector; QIR = quantum iterative reconstruction.

Exploring AI-Based System Design for Pixel-Level Protected Health Information Detection in Medical Images.

Truong T, Baltruschat IM, Klemens M, Werner G, Lenga M

pubmed logopapersJul 25 2025
De-identification of medical images is a critical step to ensure privacy during data sharing in research and clinical settings. The initial step in this process involves detecting Protected Health Information (PHI), which can be found in image metadata or imprinted within image pixels. Despite the importance of such systems, there has been limited evaluation of existing AI-based solutions, creating barriers to the development of reliable and robust tools. In this study, we present an AI-based pipeline for PHI detection, comprising three key modules: text detection, text extraction, and text analysis. We benchmark three models-YOLOv11, EasyOCR, and GPT-4o- across different setups corresponding to these modules, evaluating their performance on two different datasets encompassing multiple imaging modalities and PHI categories. Our findings indicate that the optimal setup involves utilizing dedicated vision and language models for each module, which achieves a commendable balance in performance, latency, and cost associated with the usage of large language models (LLMs). Additionally, we show that the application of LLMs not only involves identifying PHI content but also enhances OCR tasks and facilitates an end-to-end PHI detection pipeline, showcasing promising outcomes through our analysis.

SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection

Rui Pan, Ruiying Lu

arxiv logopreprintJul 25 2025
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.

Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge

Kang Wang, Chen Qin, Zhang Shi, Haoran Wang, Xiwen Zhang, Chen Chen, Cheng Ouyang, Chengliang Dai, Yuanhan Mo, Chenchen Dai, Xutong Kuang, Ruizhe Li, Xin Chen, Xiuzheng Yue, Song Tian, Alejandro Mora-Rubio, Kumaradevan Punithakumar, Shizhan Gong, Qi Dou, Sina Amirrajab, Yasmina Al Khalil, Cian M. Scannell, Lexiaozi Fan, Huili Yang, Xiaowu Sun, Rob van der Geest, Tewodros Weldebirhan Arega, Fabrice Meriaudeau, Caner Özer, Amin Ranem, John Kalkhof, İlkay Öksüz, Anirban Mukhopadhyay, Abdul Qayyum, Moona Mazher, Steven A Niederer, Carles Garcia-Cabrera, Eric Arazo, Michal K. Grzeszczyk, Szymon Płotka, Wanqin Ma, Xiaomeng Li, Rongjun Ge, Yongqing Kou, Xinrong Chen, He Wang, Chengyan Wang, Wenjia Bai, Shuo Wang

arxiv logopreprintJul 25 2025
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis. However, the efficacy of these models is highly dependent on the availability of high-quality, artifact-free images. In clinical practice, CMR acquisitions are frequently degraded by respiratory motion, yet the robustness of deep learning models against such artifacts remains an underexplored problem. To promote research in this domain, we organized the MICCAI CMRxMotion challenge. We curated and publicly released a dataset of 320 CMR cine series from 40 healthy volunteers who performed specific breathing protocols to induce a controlled spectrum of motion artifacts. The challenge comprised two tasks: 1) automated image quality assessment to classify images based on motion severity, and 2) robust myocardial segmentation in the presence of motion artifacts. A total of 22 algorithms were submitted and evaluated on the two designated tasks. This paper presents a comprehensive overview of the challenge design and dataset, reports the evaluation results for the top-performing methods, and further investigates the impact of motion artifacts on five clinically relevant biomarkers. All resources and code are publicly available at: https://github.com/CMRxMotion

Is Exchangeability better than I.I.D to handle Data Distribution Shifts while Pooling Data for Data-scarce Medical image segmentation?

Ayush Roy, Samin Enam, Jun Xia, Vishnu Suresh Lokhande, Won Hwa Kim

arxiv logopreprintJul 25 2025
Data scarcity is a major challenge in medical imaging, particularly for deep learning models. While data pooling (combining datasets from multiple sources) and data addition (adding more data from a new dataset) have been shown to enhance model performance, they are not without complications. Specifically, increasing the size of the training dataset through pooling or addition can induce distributional shifts, negatively affecting downstream model performance, a phenomenon known as the "Data Addition Dilemma". While the traditional i.i.d. assumption may not hold in multi-source contexts, assuming exchangeability across datasets provides a more practical framework for data pooling. In this work, we investigate medical image segmentation under these conditions, drawing insights from causal frameworks to propose a method for controlling foreground-background feature discrepancies across all layers of deep networks. This approach improves feature representations, which are crucial in data-addition scenarios. Our method achieves state-of-the-art segmentation performance on histopathology and ultrasound images across five datasets, including a novel ultrasound dataset that we have curated and contributed. Qualitative results demonstrate more refined and accurate segmentation maps compared to prominent baselines across three model architectures. The code will be available on Github.

MedIQA: A Scalable Foundation Model for Prompt-Driven Medical Image Quality Assessment

Siyi Xun, Yue Sun, Jingkun Chen, Zitong Yu, Tong Tong, Xiaohong Liu, Mingxiang Wu, Tao Tan

arxiv logopreprintJul 25 2025
Rapid advances in medical imaging technology underscore the critical need for precise and automated image quality assessment (IQA) to ensure diagnostic accuracy. Existing medical IQA methods, however, struggle to generalize across diverse modalities and clinical scenarios. In response, we introduce MedIQA, the first comprehensive foundation model for medical IQA, designed to handle variability in image dimensions, modalities, anatomical regions, and types. We developed a large-scale multi-modality dataset with plentiful manually annotated quality scores to support this. Our model integrates a salient slice assessment module to focus on diagnostically relevant regions feature retrieval and employs an automatic prompt strategy that aligns upstream physical parameter pre-training with downstream expert annotation fine-tuning. Extensive experiments demonstrate that MedIQA significantly outperforms baselines in multiple downstream tasks, establishing a scalable framework for medical IQA and advancing diagnostic workflows and clinical decision-making.

Deep learning-based image classification for integrating pathology and radiology in AI-assisted medical imaging.

Lu C, Zhang J, Liu R

pubmed logopapersJul 25 2025
The integration of pathology and radiology in medical imaging has emerged as a critical need for advancing diagnostic accuracy and improving clinical workflows. Current AI-driven approaches for medical image analysis, despite significant progress, face several challenges, including handling multi-modal imaging, imbalanced datasets, and the lack of robust interpretability and uncertainty quantification. These limitations often hinder the deployment of AI systems in real-world clinical settings, where reliability and adaptability are essential. To address these issues, this study introduces a novel framework, the Domain-Informed Adaptive Network (DIANet), combined with an Adaptive Clinical Workflow Integration (ACWI) strategy. DIANet leverages multi-scale feature extraction, domain-specific priors, and Bayesian uncertainty modeling to enhance interpretability and robustness. The proposed model is tailored for multi-modal medical imaging tasks, integrating adaptive learning mechanisms to mitigate domain shifts and imbalanced datasets. Complementing the model, the ACWI strategy ensures seamless deployment through explainable AI (XAI) techniques, uncertainty-aware decision support, and modular workflow integration compatible with clinical systems like PACS. Experimental results demonstrate significant improvements in diagnostic accuracy, segmentation precision, and reconstruction fidelity across diverse imaging modalities, validating the potential of this framework to bridge the gap between AI innovation and clinical utility.

Clinical application of a deep learning system for automatic mandibular alveolar bone quantity assessment and suggested treatment options using CBCT cross-sections.

Rashid MO, Gaghor S

pubmed logopapersJul 25 2025
Assessing dimensions of available bone throughout hundreds of cone-beam computed tomography cross-sectional images of the edentulous area is time-consuming, focus-demanding, and prone to variability and mistakes. This study aims for a clinically applicable artificial intelligence-based automation system for available bone quantity assessment and providing possible surgical and nonsurgical treatment options in a real-time manner. YOLOv8-seg, a single-stage convolutional neural network detector, has been used to segment mandibular alveolar bone and the inferior alveolar canal from cross-sectional images of a custom dataset. Measurements from the segmented mask of the bone and canal have been calculated mathematically and compared with manual measurements from 2 different operators, and the time for the measurement task has been compared. Classification of bone dimension with 25 treatment options has been automatically suggested by the system and validated with a team of specialists. The YOLOv8 model achieved significantly accurate improvements in segmenting anatomical structures with a precision of 0.951, recall of 0.915, mAP50 of 0.952, Intersection over Union of 0.871, and dice similarity coefficient of 0.911. The efficiency ratio of that segmentation performed by the artificial intelligence-based system is 2001 times faster in comparison to the human subject. A statistically significant difference in the measurements from the system to operators in height and time is recorded. The system's recommendations matched the clinicians' assessments in 94% of cases (83/88). Cohen κ of 0.89 indicated near-perfect agreement. The YOLOv8 model is an effective tool, providing high accuracy in segmenting dental structures with balanced computational requirements, and even with the challenges presented, the system can be clinically applicable with future improvements, providing less time-consuming and, most importantly, specialist-level accurate implant planning reports.
Page 71 of 1431421 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.