Sort by:
Page 7 of 1021014 results

A Cohort Study of Pediatric Severe Community-Acquired Pneumonia Involving AI-Based CT Image Parameters and Electronic Health Record Data.

He M, Yuan J, Liu A, Pu R, Yu W, Wang Y, Wang L, Nie X, Yi J, Xue H, Xie J

pubmed logopapersAug 8 2025
Community-acquired pneumonia (CAP) is a significant concern for children worldwide and is associated with a high morbidity and mortality. To improve patient outcomes, early intervention and accurate diagnosis are essential. Artificial intelligence (AI) can mine and label imaging data and thus may contribute to precision research and personalized clinical management. The baseline characteristics of 230 children with severe CAP hospitalized from January 2023 to October 2024 were retrospectively analyzed. The patients were divided into two groups according to the presence of respiratory failure. The predictive ability of AI-derived chest CT (computed tomography) indices alone for respiratory failure was assessed via logistic regression analysis. ROC (receiver operating characteristic) curves were plotted for these regression models. After adjusting for age, white blood cell count, neutrophils, lymphocytes, creatinine, wheezing, and fever > 5 days, a greater number of involved lung lobes [odds ratio 1.347, 95% confidence interval (95% CI) 1.036-1.750, P = 0.026] and bilateral lung involvement (odds ratio 2.734, 95% CI 1.084-6.893, P = 0.033) were significantly associated with respiratory failure. The discriminatory power (as measured by the area under curve) of Model 2 and Model 3, which included electronic health record data and the accuracy of CT imaging features, was better than that of Model 0 and Model 1, which contained only the chest CT parameters. The sensitivity and specificity of Model 2 at the optimal critical value (0.441) were 84.3% and 59.8%, respectively. The sensitivity and specificity of Model 3 at the optimal critical value (0.446) were 68.6% and 76.0%, respectively. The use of AI-derived chest CT indices may achieve high diagnostic accuracy and guide precise interventions for patients with severe CAP. However, clinical, laboratory, and AI-derived chest CT indices should be included to accurately predict and treat severe CAP.

An Anisotropic Cross-View Texture Transfer with Multi-Reference Non-Local Attention for CT Slice Interpolation.

Uhm KH, Cho H, Hong SH, Jung SW

pubmed logopapersAug 8 2025
Computed tomography (CT) is one of the most widely used non-invasive imaging modalities for medical diagnosis. In clinical practice, CT images are usually acquired with large slice thicknesses due to the high cost of memory storage and operation time, resulting in an anisotropic CT volume with much lower inter-slice resolution than in-plane resolution. Since such inconsistent resolution may lead to difficulties in disease diagnosis, deep learning-based volumetric super-resolution methods have been developed to improve inter-slice resolution. Most existing methods conduct single-image super-resolution on the through-plane or synthesize intermediate slices from adjacent slices; however, the anisotropic characteristic of 3D CT volume has not been well explored. In this paper, we propose a novel cross-view texture transfer approach for CT slice interpolation by fully utilizing the anisotropic nature of 3D CT volume. Specifically, we design a unique framework that takes high-resolution in-plane texture details as a reference and transfers them to low-resolution through-plane images. To this end, we introduce a multi-reference non-local attention module that extracts meaningful features for reconstructing through-plane high-frequency details from multiple in-plane images. Through extensive experiments, we demonstrate that our method performs significantly better in CT slice interpolation than existing competing methods on public CT datasets including a real-paired benchmark, verifying the effectiveness of the proposed framework. The source code of this work is available at https://github.com/khuhm/ACVTT.

GPT-4 vs. Radiologists: who advances mediastinal tumor classification better across report quality levels? A cohort study.

Wen R, Li X, Chen K, Sun M, Zhu C, Xu P, Chen F, Ji C, Mi P, Li X, Deng X, Yang Q, Song W, Shang Y, Huang S, Zhou M, Wang J, Zhou C, Chen W, Liu C

pubmed logopapersAug 8 2025
Accurate mediastinal tumor classification is crucial for treatment planning, but diagnostic performance varies with radiologists' experience and report quality. To evaluate GPT-4's diagnostic accuracy in classifying mediastinal tumors from radiological reports compared to radiologists of different experience levels using radiological reports of varying quality. We conducted a retrospective study of 1,494 patients from five tertiary hospitals with mediastinal tumors diagnosed via chest CT and pathology. Radiological reports were categorized into low-, medium-, and high-quality based on predefined criteria assessed by experienced radiologists. Six radiologists (two residents, two attending radiologists, and two associate senior radiologists) and GPT-4 evaluated the chest CT reports. Diagnostic performance was analyzed overall, by report quality, and by tumor type using Wald χ2 tests and 95% CIs calculated via the Wilson method. GPT-4 achieved an overall diagnostic accuracy of 73.3% (95% CI: 71.0-75.5), comparable to associate senior radiologists (74.3%, 95% CI: 72.0-76.5; p >0.05). For low-quality reports, GPT-4 outperformed associate senior radiologists (60.8% vs. 51.1%, p<0.001). In high-quality reports, GPT-4 was comparable to attending radiologists (80.6% vs.79.4%, p>0.05). Diagnostic performance varied by tumor type: GPT-4 was comparable to radiology residents for neurogenic tumors (44.9% vs. 50.3%, p>0.05), similar to associate senior radiologists for teratomas (68.1% vs. 65.9%, p>0.05), and superior in diagnosing lymphoma (75.4% vs. 60.4%, p<0.001). GPT-4 demonstrated interpretation accuracy comparable to Associate Senior Radiologists, excelling in low-quality reports and outperforming them in diagnosing lymphoma. These findings underscore GPT-4's potential to enhance diagnostic performance in challenging diagnostic scenarios.

Three-dimensional pulp chamber volume quantification in first molars using CBCT: Implications for machine learning-assisted age estimation

Ding, Y., Zhong, T., He, Y., Wang, W., Zhang, S., Zhang, X., Shi, W., jin, b.

medrxiv logopreprintAug 8 2025
Accurate adult age estimation represents a critical component of forensic individual identification. However, traditional methods relying on skeletal developmental characteristics are susceptible to preservation status and developmental variation. Teeth, owing to their exceptional taphonomic resistance and minimal postmortem alteration, emerge as premier biological samples. Utilizing the high-resolution capabilities of Cone Beam Computed Tomography (CBCT), this study retrospectively analyzed 1,857 right first molars obtained from Han Chinese adults in Sichuan Province (883 males, 974 females; aged 18-65 years). Pulp chamber volume (PCV) was measured using semi-automatic segmentation in Mimics software (v21.0). Statistically significant differences in PCV were observed based on sex and tooth position (maxillary vs. mandibular). Significant negative correlations existed between PCV and age (r = -0.86 to -0.81). The strongest correlation (r = -0.88) was identified in female maxillary first molars. Eleven curvilinear regression models and six machine learning models (Linear Regression, Lasso Regression, Neural Network, Random Forest, Gradient Boosting, and XGBoost) were developed. Among the curvilinear regression models, the cubic model demonstrated the best performance, with the female maxillary-specific model achieving a mean absolute error (MAE) of 4.95 years. Machine learning models demonstrated superior accuracy. Specifically, the sex- and tooth position-specific XGBoost model for female maxillary first molars achieved an MAE of 3.14 years (R{superscript 2} = 0.87). This represents a significant 36.5% reduction in error compared to the optimal cubic regression model. These findings demonstrate that PCV measurements in first molars, combined with machine learning algorithms (specifically XGBoost), effectively overcome the limitations of traditional methods, providing a highly precise and reproducible approach for forensic age estimation.

Unsupervised learning for inverse problems in computed tomography

Laura Hellwege, Johann Christopher Engster, Moritz Schaar, Thorsten M. Buzug, Maik Stille

arxiv logopreprintAug 7 2025
This study presents an unsupervised deep learning approach for computed tomography (CT) image reconstruction, leveraging the inherent similarities between deep neural network training and conventional iterative reconstruction methods. By incorporating forward and backward projection layers within the deep learning framework, we demonstrate the feasibility of reconstructing images from projection data without relying on ground-truth images. Our method is evaluated on the two-dimensional 2DeteCT dataset, showcasing superior performance in terms of mean squared error (MSE) and structural similarity index (SSIM) compared to traditional filtered backprojection (FBP) and maximum likelihood (ML) reconstruction techniques. Additionally, our approach significantly reduces reconstruction time, making it a promising alternative for real-time medical imaging applications. Future work will focus on extending this methodology to three-dimensional reconstructions and enhancing the adaptability of the projection geometry.

An evaluation of rectum contours generated by artificial intelligence automatic contouring software using geometry, dosimetry and predicted toxicity.

Mc Laughlin O, Gholami F, Osman S, O'Sullivan JM, McMahon SJ, Jain S, McGarry CK

pubmed logopapersAug 7 2025
Objective&#xD;This study assesses rectum contours generated using a commercial deep learning auto-contouring model and compares them to clinician contours using geometry, changes in dosimetry and toxicity modelling. &#xD;Approach&#xD;This retrospective study involved 308 prostate cancer patients who were treated using 3D-conformal radiotherapy. Computed tomography images were input into Limbus Contour (v1.8.0b3) to generate auto-contour structures for each patient. Auto-contours were not edited after their generation.&#xD;Rectum auto-contours were compared to clinician contours geometrically and dosimetrically. Dice similarity coefficient (DSC), mean Hausdorff distance (HD) and volume difference were assessed. Dose-volume histogram (DVH) constraints (V41%-V100%) were compared, and a Wilcoxon signed rank test was used to evaluate statistical significance of differences. &#xD;Toxicity modelling to compare contours was carried out using equivalent uniform dose (EUD) and clinical factors of abdominal surgery and atrial fibrillation. Trained models were tested (80:20) in their prediction of grade 1 late rectal bleeding (ntotal=124) using area-under the receiver operating characteristic curve (AUC).&#xD;Main results&#xD;Median DSC (interquartile range (IQR)) was 0.85 (0.09), median HD was 1.38 mm (0.60 mm) and median volume difference was -1.73 cc (14.58 cc). Median DVH differences between contours were found to be small (<1.5%) for all constraints although systematically larger than clinician contours (p<0.05). However, an IQR up to 8.0% was seen for individual patients across all dose constraints.&#xD;Models using EUD alone derived from clinician or auto-contours had AUCs of 0.60 (0.10) and 0.60 (0.09). AUC for models involving clinical factors and dosimetry was 0.65 (0.09) and 0.66 (0.09) when using clinician contours and auto-contours.&#xD;Significance&#xD;Although median DVH metrics were similar, variation for individual patients highlights the importance of clinician review. Rectal bleeding prediction accuracy did not depend on the contour method for this cohort. The auto-contouring model used in this study shows promise in a supervised workflow.&#xD.

A novel approach for CT image smoothing: Quaternion Bilateral Filtering for kernel conversion.

Nasr M, Piórkowski A, Brzostowski K, El-Samie FEA

pubmed logopapersAug 7 2025
Denoising reconstructed Computed Tomography (CT) images without access to raw projection data remains a significant difficulty in medical imaging, particularly when utilizing sharp or medium reconstruction kernels that generate high-frequency noise. This work introduces an innovative method that integrates quaternion mathematics with bilateral filtering to resolve this issue. The proposed Quaternion Bilateral Filter (QBF) effectively maintains anatomical structures and mitigates noise caused by the kernel by expressing CT scans in quaternion form, with the red, green, and blue channels encoded together. Compared to conventional methods that depend on raw data or grayscale filtering, our approach functions directly on reconstructed sharp kernel images. It converts them to mimic the quality of soft-kernel outputs, obtained with kernels such as B30f, using paired data from the same patients. The efficacy of the QBF is evidenced by both full-reference metrics (Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE)) and no-reference perceptual metrics (Naturalness Image Quality Evaluator (NIQE), Blind Referenceless Image Spatial Quality Evaluator (BRISQUE), and Perception-based Image Quality Evaluator (PIQE)). The results indicate that the QBF demonstrates improved denoising efficacy compared to traditional Bilateral Filter (BF), Non-Local Means (NLM), wavelet, and Convolutional Neural Network (CNN)-based processing, achieving an SSIM of 0.96 and a PSNR of 36.3 on B50f reconstructions. Additionally, segmentation-based visual validation verifies that QBF-filtered outputs maintain essential structural details necessary for subsequent diagnostic tasks. This study emphasizes the importance of quaternion-based filtering as a lightweight, interpretable, and efficient substitute for deep learning models in post-reconstruction CT image enhancement.

CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation

Hamza Kalisch, Fabian Hörst, Jens Kleesiek, Ken Herrmann, Constantin Seibold

arxiv logopreprintAug 7 2025
As medical imaging is central to diagnostic processes, automating the generation of radiology reports has become increasingly relevant to assist radiologists with their heavy workloads. Most current methods rely solely on global image features, failing to capture fine-grained organ relationships crucial for accurate reporting. To this end, we propose CT-GRAPH, a hierarchical graph attention network that explicitly models radiological knowledge by structuring anatomical regions into a graph, linking fine-grained organ features to coarser anatomical systems and a global patient context. Our method leverages pretrained 3D medical feature encoders to obtain global and organ-level features by utilizing anatomical masks. These features are further refined within the graph and then integrated into a large language model to generate detailed medical reports. We evaluate our approach for the task of report generation on the large-scale chest CT dataset CT-RATE. We provide an in-depth analysis of pretrained feature encoders for CT report generation and show that our method achieves a substantial improvement of absolute 7.9\% in F1 score over current state-of-the-art methods. The code is publicly available at https://github.com/hakal104/CT-GRAPH.

Robustness evaluation of an artificial intelligence-based automatic contouring software in daily routine practice.

Fontaine J, Suszko M, di Franco F, Leroux A, Bonnet E, Bosset M, Langrand-Escure J, Clippe S, Fleury B, Guy JB

pubmed logopapersAug 7 2025
AI-based automatic contouring streamlines radiotherapy by reducing contouring time but requires rigorous validation and ongoing daily monitoring. This study assessed how software updates affect contouring accuracy and examined how image quality variations influence AI performance. Two patient cohorts were analyzed. The software updates cohort (40 CT scans: 20 thorax, 10 pelvis, 10 H&N) compared six versions of Limbus AI contouring software. The image quality cohort (20 patients: H&N, pelvis, brain, thorax) analyzed 12 reconstructions per patient using Standard, iDose, and IMR algorithms, with simulated noise and spatial resolution (SR) degradations. AI performance was assessed using Volumetric Dice Similarity Coefficient (vDSC) and 95 % Hausdorff Distance (HD95%) with Wilcoxon tests for significance. In the software updates cohort, vDSC improved for re-trained structures across versions (mean DSC ≥ 0.75), with breast contour vDSC decreasing by 1 % between v1.5 and v1.8B3 (p > 0.05). Median HD95% values were consistently <4 mm, <5 mm, and <12 mm for H&N, pelvis, and thorax contours, respectively (p > 0.05). In the image quality cohort, no significant differences were observed between Standard, iDose, and IMR algorithms. However, noise and SR degradation significantly reduced performance: vDSC ≥ 0.9 dropped from 89 % at 2 % noise to 30 % at 20 %, and from 87 % to 70 % as SR degradation increased (p < 0.001). AI contouring accuracy improved with software updates and showed robustness to minor reconstruction variations, but it was sensitive to noise and SR degradation. Continuous validation and quality control of AI-generated contours are essential. Future studies should include a broader range of anatomical regions and larger cohorts.

Unsupervised learning for inverse problems in computed tomography

Laura Hellwege, Johann Christopher Engster, Moritz Schaar, Thorsten M. Buzug, Maik Stille

arxiv logopreprintAug 7 2025
This study presents an unsupervised deep learning approach for computed tomography (CT) image reconstruction, leveraging the inherent similarities between deep neural network training and conventional iterative reconstruction methods. By incorporating forward and backward projection layers within the deep learning framework, we demonstrate the feasibility of reconstructing images from projection data without relying on ground-truth images. Our method is evaluated on the two-dimensional 2DeteCT dataset, showcasing superior performance in terms of mean squared error (MSE) and structural similarity index (SSIM) compared to traditional filtered backprojection (FBP) and maximum likelihood (ML) reconstruction techniques. Additionally, our approach significantly reduces reconstruction time, making it a promising alternative for real-time medical imaging applications. Future work will focus on extending this methodology to three-dimensional reconstructions and enhancing the adaptability of the projection geometry.
Page 7 of 1021014 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.