Back to all papers

A phase-aware Cross-Scale U-MAMba with uncertainty-aware segmentation and Switch Atrous Bifovea EfficientNetB7 classification of kidney lesion subtype.

Authors

Rmr SS,Mb S,R D,M T,P V

Affiliations (4)

  • SRM Institute of Science and Technology, Chennai, India. [email protected].
  • SRM Institute of Science and Technology, Chennai, India.
  • Saveetha Engineering College, Thandalam, Chennai, India.
  • Panimalar Engineering College, Varadharajapuram, India.

Abstract

Kidney lesion subtype identification is essential for precise diagnosis and personalized treatment planning. However, achieving reliable classification remains challenging due to factors such as inter-patient anatomical variability, incomplete multi-phase CT acquisitions, and ill-defined or overlapping lesion boundaries. In addition, genetic and ethnic morphological variations introduce inconsistent imaging patterns, reducing the generalizability of conventional deep learning models. To address these challenges, we introduce a unified framework called Phase-aware Cross-Scale U-MAMba and Switch Atrous Bifovea EfficientNet B7 (PCU-SABENet), which integrates multi-phase reconstruction, fine-grained lesion segmentation, and robust subtype classification. The PhaseGAN-3D synthesizes missing CT phases using binary mask-guided inter-phase priors, enabling complete four-phase reconstruction even under partial acquisition conditions. The PCU segmentation module combines Contextual Attention Blocks, Cross-Scale Skip Connections, and uncertainty-aware pseudo-labeling to delineate lesion boundaries with high anatomical fidelity. These enhancements help mitigate low contrast and intra-class ambiguity. For classification, SABENet employs Switch Atrous Convolution for multi-scale receptive field adaptation, Hierarchical Tree Pooling for structure-aware abstraction, and Bi-Fovea Self-Attention to emphasize fine lesion cues and global morphology. This configuration is particularly effective in addressing morphological diversity across patient populations. Experimental results show that the proposed model achieves state-of-the-art performance, with 99.3% classification accuracy, 94.8% Dice similarity, 89.3% IoU, 98.8% precision, 99.2% recall, a phase-consistency score of 0.94, and a subtype confidence deviation of 0.08. Moreover, the model generalizes well on external datasets (TCIA) with 98.6% accuracy and maintains efficient computational performance, requiring only 0.138 GFLOPs and 8.2 ms inference time. These outcomes confirm the model's robustness in phase-incomplete settings and its adaptability to diverse patient cohorts. The PCU-SABENet framework sets a new standard in kidney lesion subtype analysis, combining segmentation precision with clinically actionable classification, thus offering a powerful tool for enhancing diagnostic accuracy and decision-making in real-world renal cancer management.

Topics

Kidney NeoplasmsDeep LearningTomography, X-Ray ComputedImage Processing, Computer-AssistedJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.