Sort by:
Page 6 of 22220 results

Multimodal quantitative analysis guides precise preoperative localization of epilepsy.

Shen Y, Shen Z, Huang Y, Wu Z, Ma Y, Hu F, Shu K

pubmed logopapersAug 15 2025
Epilepsy surgery efficacy is critically contingent upon the precise localization of the epileptogenic zone (EZ). However, conventional qualitative methods face challenges in achieving accurate localization, integrating multimodal data, and accounting for variations in clinical expertise among practitioners. With the rapid advancement of artificial intelligence and computing power, multimodal quantitative analysis has emerged as a pivotal approach for EZ localization. Nonetheless, no research team has thus far provided a systematic elaboration of this concept. This narrative review synthesizes recent advancements across four key dimensions: (1) seizure semiology quantification using deep learning and computer vision to analyze behavioral patterns; (2) structural neuroimaging leveraging high-field MRI, radiomics, and AI; (3) functional imaging integrating EEG-fMRI dynamics and PET biomarkers; and (4) electrophysiological quantification encompassing source localization, intracranial EEG, and network modeling. The convergence of these complementary approaches enables comprehensive characterization of epileptogenic networks across behavioral, structural, functional, and electrophysiological domains. Despite these advancements, clinical heterogeneity, limitations in algorithmic generalizability, and barriers to data sharing hinder translation into clinical practice. Future directions emphasize personalized modeling, federated learning, and cross-modal standardization to advance data-driven localization. This integrated paradigm holds promise for overcoming qualitative limitations, reducing medical costs, and improving seizure-free outcomes.

Artificial intelligence across the cancer care continuum.

Riaz IB, Khan MA, Osterman TJ

pubmed logopapersAug 15 2025
Artificial intelligence (AI) holds significant potential to enhance various aspects of oncology, spanning the cancer care continuum. This review provides an overview of current and emerging AI applications, from risk assessment and early detection to treatment and supportive care. AI-driven tools are being developed to integrate diverse data sources, including multi-omics and electronic health records, to improve cancer risk stratification and personalize prevention strategies. In screening and diagnosis, AI algorithms show promise in augmenting the accuracy and efficiency of medical image analysis and histopathology interpretation. AI also offers opportunities to refine treatment planning, optimize radiation therapy, and personalize systemic therapy selection. Furthermore, AI is explored for its potential to improve survivorship care by tailoring interventions and to enhance end-of-life care through improved symptom management and prognostic modeling. Beyond care delivery, AI augments clinical workflows, streamlines the dissemination of up-to-date evidence, and captures critical patient-reported outcomes for clinical decision support and outcomes assessment. However, the successful integration of AI into clinical practice requires addressing key challenges, including rigorous validation of algorithms, ensuring data privacy and security, and mitigating potential biases. Effective implementation necessitates interdisciplinary collaboration and comprehensive education for health care professionals. The synergistic interaction between AI and clinical expertise is crucial for realizing the potential of AI to contribute to personalized and effective cancer care. This review highlights the current state of AI in oncology and underscores the importance of responsible development and implementation.

Healthcare and cutting-edge technology: Advancements, challenges, and future prospects.

Singhal V, R S, Singhal S, Tiwari A, Mangal D

pubmed logopapersAug 14 2025
The high-level integration of technology in health care has radically changed the process of patient care, diagnosis, treatment, and health outcomes. This paper discusses significant technological advances: AI for medical imaging to detect early disease stages; robotic surgery with precision and minimally invasive techniques; telemedicine for remote monitoring and virtual consultation; personalized medicine through genomic analysis; and blockchain in secure and transparent handling of health data. Every section in the paper discusses the underlying principles, advantages, and disadvantages associated with such technologies, supported by appropriate case studies like deploying AI in radiology to enhance cancer diagnosis or robotic surgery to enhance accuracy in surgery and blockchain technology in electronic health records to enable data integrity and security. The paper also discusses key ethical issues, including risks to data privacy, algorithmic bias in AI-based diagnosis, patient consent problems in genomic medicine, and regulatory issues blocking the large-scale adoption of digital health solutions. The article also includes some recommended avenues of future research in the spaces where interdisciplinary cooperation, effective cybersecurity frameworks, and policy transformations are urgently required to ensure that new healthcare technology adoption is ethical and responsible. The work is aimed at delivering important information for policymakers and researchers who are interested in the changing roles of technology to improve healthcare provision and patient outcomes, as well as healthcare practitioners.

Exploring the potential of generative artificial intelligence in medical image synthesis: opportunities, challenges, and future directions.

Khosravi B, Purkayastha S, Erickson BJ, Trivedi HM, Gichoya JW

pubmed logopapersAug 14 2025
Generative artificial intelligence has emerged as a transformative force in medical imaging since 2022, enabling the creation of derivative synthetic datasets that closely resemble real-world data. This Viewpoint examines key aspects of synthetic data, focusing on its advancements, applications, and challenges in medical imaging. Various generative artificial intelligence image generation paradigms, such as physics-informed and statistical models, and their potential to augment and diversify medical research resources are explored. The promises of synthetic datasets, including increased diversity, privacy preservation, and multifunctionality, are also discussed, along with their ability to model complex biological phenomena. Next, specific applications using synthetic data such as enhancing medical education, augmenting rare disease datasets, improving radiology workflows, and enabling privacy-preserving multicentre collaborations are highlighted. The challenges and ethical considerations surrounding generative artificial intelligence, including patient privacy, data copying, and potential biases that could impede clinical translation, are also addressed. Finally, future directions for research and development in this rapidly evolving field are outlined, emphasising the need for robust evaluation frameworks and responsible utilisation of generative artificial intelligence in medical imaging.

Economic Evaluations and Equity in the Use of Artificial Intelligence in Imaging Examinations for Medical Diagnosis in People With Dermatological, Neurological, and Pulmonary Diseases: Systematic Review.

Santana GO, Couto RM, Loureiro RM, Furriel BCRS, de Paula LGN, Rother ET, de Paiva JPQ, Correia LR

pubmed logopapersAug 13 2025
Health care systems around the world face numerous challenges. Recent advances in artificial intelligence (AI) have offered promising solutions, particularly in diagnostic imaging. This systematic review focused on evaluating the economic feasibility of AI in real-world diagnostic imaging scenarios, specifically for dermatological, neurological, and pulmonary diseases. The central question was whether the use of AI in these diagnostic assessments improves economic outcomes and promotes equity in health care systems. This systematic review has 2 main components, economic evaluation and equity assessment. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) tool to ensure adherence to best practices in systematic reviews. The protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews), and we followed the PRISMA-E (Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Equity Extension) guidelines for equity. Scientific articles reporting on economic evaluations or equity considerations related to the use of AI-based tools in diagnostic imaging in dermatology, neurology, or pulmonology were included in the study. The search was conducted in the PubMed, Embase, Scopus, and Web of Science databases. Methodological quality was assessed using the following checklists, CHEC (Consensus on Health Economic Criteria) for economic evaluations, EPHPP (Effective Public Health Practice Project) for equity evaluation studies, and Welte for transferability. The systematic review identified 9 publications within the scope of the research question, with sample sizes ranging from 122 to over 1.3 million participants. The majority of studies addressed economic evaluation (88.9%), with most studies addressing pulmonary diseases (n=6; 66.6%), followed by neurological diseases (n=2; 22.3%), and only 1 (11.1%) study addressing dermatological diseases. These studies had an average quality access of 87.5% on the CHEC checklist. Only 2 studies were found to be transferable to Brazil and other countries with a similar health context. The economic evaluation revealed that 87.5% of studies highlighted the benefits of using AI in dermatology, neurology, and pulmonology, highlighting significant cost-effectiveness outcomes, with the most advantageous being a negative cost-effectiveness ratio of -US $27,580 per QALY (quality-adjusted life year) for melanoma diagnosis, indicating substantial cost savings in this scenario. The only study assessing equity, based on 129,819 radiographic images, identified AI-assisted underdiagnosis, particularly in certain subgroups defined by gender, ethnicity, and socioeconomic status. This review underscores the importance of transparency in the description of AI tools and the representativeness of population subgroups to mitigate health disparities. As AI is rapidly being integrated into health care, detailed assessments are essential to ensure that benefits reach all patients, regardless of sociodemographic factors.

Results of the 9th Scientific Workshop of the European Crohn's and Colitis Organisation (ECCO): Artificial Intelligence in Endoscopy, Radiology and Histology in IBD Diagnostics.

Mookhoek A, Sinonque P, Allocca M, Carter D, Ensari A, Iacucci M, Kopylov U, Verstockt B, Baumgart DC, Noor NM, El-Hussuna A, Sahnan K, Marigorta UM, Noviello D, Bossuyt P, Pellino G, Soriano A, de Laffolie J, Daperno M, Raine T, Cleynen I, Sebastian S

pubmed logopapersAug 12 2025
In this review, a comprehensive overview of the current state of artificial intelligence (AI) research in Inflammatory Bowel Disease (IBD) diagnostics in the domains of endoscopy, radiology and histology is presented. Moreover, key considerations for development of AI algorithms in medical image analysis are discussed. AI presents a potential breakthrough in real-time, objective and rapid endoscopic assessment, with implications for predicting disease progression. It is anticipated that, by harmonising multimodal data, AI will transform patient care through early diagnosis, accurate patient profiling and therapeutic response prediction. The ability of AI in cross-sectional medical imaging to improve diagnostic accuracy, automate and enable objective assessment of disease activity and predict clinical outcomes highlights its transformative potential. AI models have consistently outperformed traditional methods of image interpretation, particularly in complex areas such as differentiating IBD subtypes, identifying disease progression and complications. The use of AI in histology is a particularly dynamic research field. Implementation of AI algorithms in clinical practice is still lagging, a major hurdle being the lack of a digital workflow in many pathology institutes. Adoption is likely to start with implementation of automatic disease activity scoring. Beyond matching pathologist performance, algorithms may teach us more about IBD pathophysiology. While AI is set to substantially advance IBD diagnostics, various challenges such as heterogeneous datasets, retrospective designs and assessment of different endpoints must be addressed. Implementation of novel standards of reporting may drive an increase in research quality and overcome these obstacles.

Enabling Physicians to Make an Informed Adoption Decision on Artificial Intelligence Applications in Medical Imaging Diagnostics: Qualitative Study.

Hennrich J, Doctor E, Körner MF, Lederman R, Eymann T

pubmed logopapersAug 12 2025
Artificial intelligence (AI) applications hold great promise for improving accuracy and efficiency in medical imaging diagnostics. However, despite the expected benefit of AI applications, widespread adoption of the technology is progressing slower than expected due to technological, organizational, and regulatory obstacles, and user-related barriers, with physicians playing a central role in adopting AI applications. This study aims to provide guidance on enabling physicians to make an informed adoption decision regarding AI applications by identifying and discussing measures to address key barriers from physicians' perspectives. We used a 2-step qualitative research approach. First, we conducted a structured literature review by screening 865 papers to identify potential enabling measures. Second, we interviewed 14 experts to evaluate the literature-based measures and enriched them. By analyzing the literature and interview transcripts, we revealed 11 measures, categorized into Enabling Adoption Decision Measures (eg, educating physicians, preparing future physicians, and providing transparency) and Supporting Adoption Measures (eg, implementation guidelines and AI marketplaces). These measures aim to inform physicians' decisions and support the adoption process. This study provides a comprehensive overview of measures to enable physicians to make an informed adoption decision on AI applications in medical imaging diagnostics. Thereby, we are the first to give specific recommendations on how to realize the potential of AI applications in medical imaging diagnostics from a user perspective.

Ethical considerations and robustness of artificial neural networks in medical image analysis under data corruption.

Okunev M, Handelman D, Handelman A

pubmed logopapersAug 11 2025
Medicine is one of the most sensitive fields in which artificial intelligence (AI) is extensively used, spanning from medical image analysis to clinical support. Specifically, in medicine, where every decision may severely affect human lives, the issue of ensuring that AI systems operate ethically and produce results that align with ethical considerations is of great importance. In this work, we investigate the combination of several key parameters on the performance of artificial neural networks (ANNs) used for medical image analysis in the presence of data corruption or errors. For this purpose, we examined five different ANN architectures (AlexNet, LeNet 5, VGG16, ResNet-50, and Vision Transformers - ViT), and for each architecture, we checked its performance under varying combinations of training dataset sizes and percentages of images that are corrupted through mislabeling. The image mislabeling simulates deliberate or nondeliberate changes to the dataset, which may cause the AI system to produce unreliable results. We found that the five ANN architectures produce different results for the same task, both for cases with and without dataset modification, which implies that the selection of which ANN architecture to implement may have ethical aspects that need to be considered. We also found that label corruption resulted in a mixture of performance metrics tendencies, indicating that it is difficult to conclude whether label corruption has occurred. Our findings demonstrate the relation between ethics in AI and ANN architecture implementation and AI computational parameters used therefor, and raise awareness of the need to find appropriate ways to determine whether label corruption has occurred.

Unconditional latent diffusion models memorize patient imaging data.

Dar SUH, Seyfarth M, Ayx I, Papavassiliu T, Schoenberg SO, Siepmann RM, Laqua FC, Kahmann J, Frey N, Baeßler B, Foersch S, Truhn D, Kather JN, Engelhardt S

pubmed logopapersAug 11 2025
Generative artificial intelligence models facilitate open-data sharing by proposing synthetic data as surrogates of real patient data. Despite the promise for healthcare, some of these models are susceptible to patient data memorization, where models generate patient data copies instead of novel synthetic samples, resulting in patient re-identification. Here we assess memorization in unconditional latent diffusion models by training them on a variety of datasets for synthetic data generation and detecting memorization with a self-supervised copy detection approach. We show a high degree of patient data memorization across all datasets, with approximately 37.2% of patient data detected as memorized and 68.7% of synthetic samples identified as patient data copies. Latent diffusion models are more susceptible to memorization than autoencoders and generative adversarial networks, and they outperform non-diffusion models in synthesis quality. Augmentation strategies during training, small architecture size and increasing datasets can reduce memorization, while overtraining the models can enhance it. These results emphasize the importance of carefully training generative models on private medical imaging datasets and examining the synthetic data to ensure patient privacy.

Dense breasts and women's health: which screenings are essential?

Mota BS, Shimizu C, Reis YN, Gonçalves R, Soares Junior JM, Baracat EC, Filassi JR

pubmed logopapersAug 9 2025
This review synthesizes current evidence regarding optimal breast cancer screening strategies for women with dense breasts, a population at increased risk due to decreased mammographic sensitivity. A systematic literature review was performed in accordance with PRISMA criteria, covering MEDLINE, EMBASE, CINAHL Plus, Scopus, and Web of Science until May 2025. The analysis examines advanced imaging techniques such as digital breast tomosynthesis (DBT), contrast-enhanced spectral mammography (CESM), ultrasound, and magnetic resonance imaging (MRI), assessing their effectiveness in addressing the shortcomings of traditional mammography in dense breast tissue. The review rigorously evaluates the incorporation of risk stratification models, such as the BCSC, in customizing screening regimens, in conjunction with innovative technologies like liquid biopsy and artificial intelligence-based image analysis for improved risk prediction. A key emphasis is placed on the heterogeneity in international screening guidelines and the challenges in translating research findings to diverse clinical settings, particularly in resource-constrained environments. The discussion includes ethical implications regarding compulsory breast density notification and the possibility of intensifying disparities in health care. The review ultimately encourages the development of evidence-based, context-specific guidelines that facilitate equitable access to effective breast cancer screening for all women with dense breasts.
Page 6 of 22220 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.