Sort by:
Page 6 of 19190 results

Comparative accuracy of two commercial AI algorithms for musculoskeletal trauma detection in emergency radiographs.

Huhtanen JT, Nyman M, Blanco Sequeiros R, Koskinen SK, Pudas TK, Kajander S, Niemi P, Aronen HJ, Hirvonen J

pubmed logopapersJun 9 2025
Missed fractures are the primary cause of interpretation errors in emergency radiology, and artificial intelligence has recently shown great promise in radiograph interpretation. This study compared the diagnostic performance of two AI algorithms, BoneView and RBfracture, in detecting traumatic abnormalities (fractures and dislocations) in MSK radiographs. AI algorithms analyzed 998 radiographs (585 normal, 413 abnormal), against the consensus of two MSK specialists. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and interobserver agreement (Cohen's Kappa) were calculated. 95% confidence intervals (CI) assessed robustness, and McNemar's tests compared sensitivity and specificity between the AI algorithms. BoneView demonstrated a sensitivity of 0.893 (95% CI: 0.860-0.920), specificity of 0.885 (95% CI: 0.857-0.909), PPV of 0.846, NPV of 0.922, and accuracy of 0.889. RBfracture demonstrated a sensitivity of 0.872 (95% CI: 0.836-0.901), specificity of 0.892 (95% CI: 0.865-0.915), PPV of 0.851, NPV of 0.908, and accuracy of 0.884. No statistically significant differences were found in sensitivity (p = 0.151) or specificity (p = 0.708). Kappa was 0.81 (95% CI: 0.77-0.84), indicating almost perfect agreement between the two AI algorithms. Performance was similar in adults and children. Both AI algorithms struggled more with subtle abnormalities, which constituted 66% and 70% of false negatives but only 20% and 18% of true positives for the two AI algorithms, respectively (p < 0.001). BoneView and RBfracture exhibited high diagnostic performance and almost perfect agreement, with consistent results across adults and children, highlighting the potential of AI in emergency radiograph interpretation.

Automated detection of spinal bone marrow oedema in axial spondyloarthritis: training and validation using two large phase 3 trial datasets.

Jamaludin A, Windsor R, Ather S, Kadir T, Zisserman A, Braun J, Gensler LS, Østergaard M, Poddubnyy D, Coroller T, Porter B, Ligozio G, Readie A, Machado PM

pubmed logopapersJun 9 2025
To evaluate the performance of machine learning (ML) models for the automated scoring of spinal MRI bone marrow oedema (BMO) in patients with axial spondyloarthritis (axSpA) and compare them with expert scoring. ML algorithms using SpineNet software were trained and validated on 3483 spinal MRIs from 686 axSpA patients across two clinical trial datasets. The scoring pipeline involved (i) detection and labelling of vertebral bodies and (ii) classification of vertebral units for the presence or absence of BMO. Two models were tested: Model 1, without manual segmentation, and Model 2, incorporating an intermediate manual segmentation step. Model outputs were compared with those of human experts using kappa statistics, balanced accuracy, sensitivity, specificity, and AUC. Both models performed comparably to expert readers, regarding presence vs absence of BMO. Model 1 outperformed Model 2, with an AUC of 0.94 (vs 0.88), accuracy of 75.8% (vs 70.5%), and kappa of 0.50 (vs 0.31), using absolute reader consensus scoring as the external reference; this performance was similar to the expert inter-reader accuracy of 76.8% and kappa of 0.47, in a radiographic axSpA dataset. In a non-radiographic axSpA dataset, Model 1 achieved an AUC of 0.97 (vs 0.91 for Model 2), accuracy of 74.6% (vs 70%), and kappa of 0.52 (vs 0.27), comparable to the expert inter-reader accuracy of 74.2% and kappa of 0.46. ML software shows potential for automated MRI BMO assessment in axSpA, offering benefits such as improved consistency, reduced labour costs, and minimised inter- and intra-reader variability. Clinicaltrials.gov, MEASURE 1 study (NCT01358175); PREVENT study (NCT02696031).

Developing a Deep Learning Radiomics Model Combining Lumbar CT, Multi-Sequence MRI, and Clinical Data to Predict High-Risk Adjacent Segment Degeneration Following Lumbar Fusion: A Retrospective Multicenter Study.

Zou C, Wang T, Wang B, Fei Q, Song H, Zang L

pubmed logopapersJun 9 2025
Study designRetrospective cohort study.ObjectivesDevelop and validate a model combining clinical data, deep learning radiomics (DLR), and radiomic features from lumbar CT and multisequence MRI to predict high-risk patients for adjacent segment degeneration (ASDeg) post-lumbar fusion.MethodsThis study included 305 patients undergoing preoperative CT and MRI for lumbar fusion surgery, divided into training (n = 192), internal validation (n = 83), and external test (n = 30) cohorts. Vision Transformer 3D-based deep learning model was developed. LASSO regression was used for feature selection to establish a logistic regression model. ASDeg was defined as adjacent segment degeneration during radiological follow-up 6 months post-surgery. Fourteen machine learning algorithms were evaluated using ROC curves, and a combined model integrating clinical variables was developed.ResultsAfter feature selection, 21 radiomics, 12 DLR, and 3 clinical features were selected. The linear support vector machine algorithm performed best for the radiomic model, and AdaBoost was optimal for the DLR model. A combined model using these and clinical features was developed, with the multi-layer perceptron as the most effective algorithm. The areas under the curve for training, internal validation, and external test cohorts were 0.993, 0.936, and 0.835, respectively. The combined model outperformed the combined predictions of 2 surgeons.ConclusionsThis study developed and validated a combined model integrating clinical, DLR and radiomic features, demonstrating high predictive performance for identifying high-risk ASDeg patients post-lumbar fusion based on clinical data, CT, and MRI. The model could potentially reduce ASDeg-related revision surgeries, thereby reducing the burden on the public healthcare.

Diagnostic performance of lumbar spine CT using deep learning denoising to evaluate disc herniation and spinal stenosis.

Park S, Kang JH, Moon SG

pubmed logopapersJun 7 2025
To evaluate the diagnostic performance of lumbar spine CT using deep learning denoising (DLD CT) for detecting disc herniation and spinal stenosis. This retrospective study included 47 patients (229 intervertebral discs from L1/2 to L5/S1; 18 men and 29 women; mean age, 69.1 ± 10.9 years) who underwent lumbar spine CT and MRI within 1 month. CT images were reconstructed using filtered back projection (FBP) and denoised using a deep learning algorithm (ClariCT.AI). Three radiologists independently evaluated standard CT and DLD CT at an 8-week interval for the presence of disc herniation, central canal stenosis, and neural foraminal stenosis. Subjective image quality and diagnostic confidence were also assessed using five-point Likert scales. Standard CT and DLD CT were compared using MRI as a reference standard. DLD CT showed higher sensitivity (60% (70/117) vs. 44% (51/117); p < 0.001) and similar specificity (94% (534/570) vs. 94% (538/570); p = 0.465) for detecting disc herniation. Specificity for detecting spinal canal stenosis and neural foraminal stenosis was higher in DLD CT (90% (487/540) vs. 86% (466/540); p = 0.003, 94% (1202/1272) vs. 92% (1171/1272); p < 0.001), while sensitivity was comparable (81% (119/147) vs. 77% (113/147); p = 0.233, 83% (85/102) vs. 81% (83/102); p = 0.636). Image quality and diagnostic confidence were superior for DLD CT (all comparisons, p < 0.05). Compared to standard CT, DLD CT can improve diagnostic performance in detecting disc herniation and spinal stenosis with superior image quality and diagnostic confidence. Question The accurate diagnosis of disc herniation and spinal stenosis is limited on lumbar spine CT because of the low soft-tissue contrast. Findings Lumbar spine CT using deep learning denoising (DLD CT) demonstrated superior diagnostic performance in detecting disc herniation and spinal stenosis compared to standard CT. Clinical relevance DLD CT can be used as a simple and cost-effective screening test.

Contribution of Labrum and Cartilage to Joint Surface in Different Hip Deformities: An Automatic Deep Learning-Based 3-Dimensional Magnetic Resonance Imaging Analysis.

Meier MK, Roshardt JA, Ruckli AC, Gerber N, Lerch TD, Jung B, Tannast M, Schmaranzer F, Steppacher SD

pubmed logopapersJun 7 2025
Multiple 2-dimensional magnetic resonance imaging (MRI) studies have indicated that the size of the labrum adjusts in response to altered joint loading. In patients with hip dysplasia, it tends to increase as a compensatory mechanism for inadequate acetabular coverage. To determine the differences in labral contribution to the joint surface among different hip deformities as well as which radiographic parameters influence labral contribution to the joint surface using a deep learning-based approach for automatic 3-dimensional (3D) segmentation of MRI. Cross-sectional study; Level of evidence, 4. This retrospective study was approved by the local ethics committee with waiver for informed consent. A total of 98 patients (100 hips) with symptomatic hip deformities undergoing direct hip magnetic resonance arthrography (3 T) between January 2020 and October 2021 were consecutively selected (mean age, 30 ± 9 years; 64% female). The standard imaging protocol included proton density-weighted turbo spin echo images and an axial-oblique 3D T1-weighted MP2RAGE sequence. According to acetabular morphology, hips were divided into subgroups: dysplasia (lateral center-edge [LCE] angle, <23°), normal coverage (LCE, 23°-33°), overcoverage (LCE, 33°-39°), severe overcoverage (LCE, >39°), and retroversion (retroversion index >10% and all 3 retroversion signs positive). A previously validated deep learning approach for automatic segmentation and software for calculation of the joint surface were used. The labral contribution to the joint surface was defined as follows: labrum surface area/(labrum surface area + cartilage surface area). One-way analysis of variance with Tukey correction for multiple comparison and linear regression analysis was performed. The mean labral contribution of the joint surface of dysplastic hips was 26% ± 5% (95% CI, 24%-28%) and higher compared with all other hip deformities (<i>P</i> value range, .001-.036). Linear regression analysis identified LCE angle (β = -.002; <i>P</i> < .001) and femoral torsion (β = .001; <i>P</i> = .008) as independent predictors for labral contribution to the joint surface with a goodness-of-fit <i>R</i><sup>2</sup> value of 0.35. The labral contribution to the joint surface differs among hip deformities and is influenced by lateral acetabular coverage and femoral torsion. This study paves the way for a more in-depth understanding of the underlying pathomechanism and a reliable 3D analysis of the hip joint that can be indicative for surgical decision-making in patients with hip deformities.

Photon-counting detector CT in musculoskeletal imaging: benefits and outlook.

El Sadaney AO, Ferrero A, Rajendran K, Booij R, Marcus R, Sutter R, Oei EHG, Baffour F

pubmed logopapersJun 6 2025
Photon-counting detector CT (PCD-CT) represents a significant advancement in medical imaging, particularly for musculoskeletal (MSK) applications. Its primary innovation lies in enhanced spatial resolution, which facilitates improved detection of small anatomical structures such as trabecular bone, osteophytes, and subchondral cysts. PCD-CT enables high-quality imaging with reduced radiation doses, making it especially beneficial for populations requiring frequent imaging, such as pediatric patients and individuals with multiple myeloma. Additionally, PCD-CT supports advanced applications like bone quality assessment, which correlates well with gold-standard tests, and can aid in diagnosing osteoporosis and assessing fracture risk. Techniques such as spectral shaping and virtual monoenergetic imaging further optimize the technology, minimizing artifacts and enhancing material decomposition. These capabilities extend to conditions like gout and hematologic malignancies, offering improved detection and assessment. The integration of artificial intelligence could enhance PCD-CT's performance by reducing image noise and improving quantitative assessments. Ultimately, PCD-CT's superior resolution, reduced dose protocols, and multi-energy imaging capabilities will likely have a transformative impact on MSK imaging, improving diagnostic accuracy, patient care, and clinical outcomes.

A Decade of Advancements in Musculoskeletal Imaging.

Wojack P, Fritz J, Khodarahmi I

pubmed logopapersJun 6 2025
The past decade has witnessed remarkable advancements in musculoskeletal radiology, driven by increasing demand for medical imaging and rapid technological innovations. Contrary to early concerns about artificial intelligence (AI) replacing radiologists, AI has instead enhanced imaging capabilities, aiding in automated abnormality detection and workflow efficiency. MRI has benefited from acceleration techniques that significantly reduce scan times while maintaining high-quality imaging. In addition, novel MRI methodologies now support precise anatomic and quantitative imaging across a broad spectrum of field strengths. In CT, dual-energy and photon-counting technologies have expanded diagnostic possibilities for musculoskeletal applications. This review explores these key developments, examining their impact on clinical practice and the future trajectory of musculoskeletal radiology.

Development of a Deep Learning Model for the Volumetric Assessment of Osteonecrosis of the Femoral Head on Three-Dimensional Magnetic Resonance Imaging.

Uemura K, Takashima K, Otake Y, Li G, Mae H, Okada S, Hamada H, Sugano N

pubmed logopapersJun 6 2025
Although volumetric assessment of necrotic lesions using the Steinberg classification predicts future collapse in osteonecrosis of the femoral head (ONFH), quantifying these lesions using magnetic resonance imaging (MRI) generally requires time and effort, allowing the Steinberg classification to be routinely used in clinical investigations. Thus, this study aimed to use deep learning to develop a method for automatically segmenting necrotic lesions using MRI and for automatically classifying them according to the Steinberg classification. A total of 63 hips from patients who had ONFH and did not have collapse were included. An orthopaedic surgeon manually segmented the femoral head and necrotic lesions on MRI acquired using a spoiled gradient-echo sequence. Based on manual segmentation, 22 hips were classified as Steinberg grade A, 23 as Steinberg grade B, and 18 as Steinberg grade C. The manually segmented labels were used to train a deep learning model that used a 5-layer Dynamic U-Net system. A four-fold cross-validation was performed to assess segmentation accuracy using the Dice coefficient (DC) and average symmetric distance (ASD). Furthermore, hip classification accuracy according to the Steinberg classification was evaluated along with the weighted Kappa coefficient. The median DC and ASD for the femoral head region were 0.95 (interquartile range [IQR], 0.95 to 0.96) and 0.65 mm (IQR, 0.59 to 0.75), respectively. For necrotic lesions, the median DC and ASD were 0.89 (IQR, 0.85 to 0.92) and 0.76 mm (IQR, 0.58 to 0.96), respectively. Based on the Steinberg classification, the grading matched in 59 hips (accuracy: 93.7%), with a weighted Kappa coefficient of 0.98. The proposed deep learning model exhibited high accuracy in segmenting and grading necrotic lesions according to the Steinberg classification using MRI. This model can be used to assist clinicians in the volumetric assessment of ONFH.

UANV: UNet-based attention network for thoracolumbar vertebral compression fracture angle measurement.

Lee Y, Kim J, Lee KC, An S, Cho Y, Ahn KS, Hur JW

pubmed logopapersJun 6 2025
Kyphosis is a prevalent spinal condition where the spine curves in the sagittal plane, resulting in spine deformities. Curvature estimation provides a powerful index to assess the deformation severity of scoliosis. In current clinical diagnosis, the standard curvature estimation method for quantitatively assessing the curvature is performed by measuring the vertebral angle, which is the angle between two lines, drawn perpendicular to the upper and lower endplates of the involved vertebra. However, manual Cobb angle measurement requires considerable time and effort, along with associated problems such as interobserver and intraobserver variations. Hence, in this study, we propose UNet-based Attention Network for Thoracolumbar Vertebral Compression Fracture Angle (UANV), a vertebra angle measuring model using lateral spinal X-ray based on a deep convolutional neural network (CNN). Specifically, we considered the detailed shape of each vertebral body with an attention mechanism and then recorded each edge of each vertebra to calculate vertebrae angles.

A Machine Learning Method to Determine Candidates for Total and Unicompartmental Knee Arthroplasty Based on a Voting Mechanism.

Zhang N, Zhang L, Xiao L, Li Z, Hao Z

pubmed logopapersJun 5 2025
Knee osteoarthritis (KOA) is a prevalent condition. Accurate selection between total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is crucial for optimal treatment in patients who have end-stage KOA, particularly for improving clinical outcomes and reducing healthcare costs. This study proposes a machine learning model based on a voting mechanism to enhance the accuracy of surgical decision-making for KOA patients. Radiographic data were collected from a high-volume joint arthroplasty practice, focusing on anterior-posterior, lateral, and skyline X-ray views. The dataset included 277 TKA and 293 UKA cases, each labeled through intraoperative observations (indicating whether TKA or UKA was the appropriate choice). A five-fold cross-validation approach was used for training and validation. In the proposed method, three base models were first trained independently on single-view images, and a voting mechanism was implemented to aggregate model outputs. The performance of the proposed method was evaluated by using metrics such as accuracy and the area under the receiver operating characteristic curve (AUC). The proposed method achieved an accuracy of 94.2% and an AUC of 0.98%, demonstrating superior performance compared to existing models. The voting mechanism enabled base models to effectively utilize the detailed features from all three X-ray views, leading to enhanced predictive accuracy and model interpretability. This study provides a high-accuracy method for surgical decision-making between TKA and UKA for KOA patients, requiring only standard X-rays and offering potential for clinical application in automated referrals and preoperative planning.
Page 6 of 19190 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.