Analyzing pediatric forearm X-rays for fracture analysis using machine learning.

Authors

Lam V,Parida A,Dance S,Tabaie S,Cleary K,Anwar SM

Affiliations (4)

  • Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA. [email protected].
  • Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.
  • Nationwide Children's Hospital, Columbus, OH, USA.
  • School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.

Abstract

Forearm fractures constitute a significant proportion of emergency department presentations in pediatric population. The treatment goal is to restore length and alignment between the distal and proximal bone fragments. While immobilization through splinting or casting is enough for non-displaced and minimally displaced fractures. However, moderately or severely displaced fractures often require reduction for realignment. However, appropriate treatment in current practices has challenges due to the lack of resources required for specialized pediatric care leading to delayed and unnecessary transfers between medical centers, which potentially create treatment complications and burdens. The purpose of this study is to build a machine learning model for analyzing forearm fractures to assist clinical centers that lack surgical expertise in pediatric orthopedics. X-ray scans from 1250 children were curated, preprocessed, and manually annotated at our clinical center. Several machine learning models were fine-tuned using a pretraining strategy leveraging self-supervised learning model with vision transformer backbone. We further employed strategies to identify the most important region related to fractures within the forearm X-ray. The model performance was evaluated with and without region of interest (ROI) detection to find an optimal model for forearm fracture analyses. Our proposed strategy leverages self-supervised pretraining (without labels) followed by supervised fine-tuning (with labels). The fine-tuned model using regions cropped with ROI identification resulted in the highest classification performance with a true-positive rate (TPR) of 0.79, true-negative rate (TNR) of 0.74, AUROC of 0.81, and AUPR of 0.86 when evaluated on the testing data. The results showed the feasibility of using machine learning models in predicting the appropriate treatment for forearm fractures in pediatric cases. With further improvement, the algorithm could potentially be used as a tool to assist non-specialized orthopedic providers in diagnosing and providing treatment.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.