Sort by:
Page 59 of 1691682 results

<sup>Advanced glaucoma disease segmentation and classification with grey wolf optimized U</sup> <sup>-Net++ and capsule networks</sup>.

Govindharaj I, Deva Priya W, Soujanya KLS, Senthilkumar KP, Shantha Shalini K, Ravichandran S

pubmed logopapersJun 27 2025
Early detection of glaucoma represents a vital factor in securing vision while the disease retains its position as one of the central causes of blindness worldwide. The current glaucoma screening strategies with expert interpretation depend on complex and time-consuming procedures which slow down both diagnosis processes and intervention timing. This research adopts a complex automated glaucoma diagnostic system that combines optimized segmentation solutions together with classification platforms. The proposed segmentation approach implements an enhanced version of U-Net++ using dynamic parameter control provided by GWO to segment optic disc and cup regions in retinal fundus images. Through the implementation of GWO the algorithm uses wolf-pack hunting strategies to adjust parameters dynamically which enables it to locate diverse textural patterns inside images. The system uses a CapsNet capsule network for classification because it maintains visual spatial organization to detect glaucoma-related patterns precisely. The developed system secures an evaluation accuracy of 95.1% in segmentation and classification tasks better than typical approaches. The automated system eliminates and enhances clinical diagnostic speed as well as diagnostic precision. The tool stands out because of its supreme detection accuracy and reliability thus making it an essential clinical early-stage glaucoma diagnostic system and a scalable healthcare deployment solution. To develop an advanced automated glaucoma diagnostic system by integrating an optimized U-Net++ segmentation model with a Capsule Network (CapsNet) classifier, enhanced through Grey Wolf Optimization Algorithm (GWOA), for precise segmentation of optic disc and cup regions and accurate glaucoma classification from retinal fundus images. This study proposes a two-phase computer-assisted diagnosis (CAD) framework. In the segmentation phase, an enhanced U-Net++ model, optimized by GWOA, is employed to accurately delineate the optic disc and cup regions in fundus images. The optimization dynamically tunes hyperparameters based on grey wolf hunting behavior for improved segmentation precision. In the classification phase, a CapsNet architecture is used to maintain spatial hierarchies and effectively classify images as glaucomatous or normal based on segmented outputs. The performance of the proposed model was validated using the ORIGA retinal fundus image dataset, and evaluated against conventional approaches. The proposed GWOA-UNet++ and CapsNet framework achieved a segmentation and classification accuracy of 95.1%, outperforming existing benchmark models such as MTA-CS, ResFPN-Net, DAGCN, MRSNet and AGCT. The model demonstrated robustness against image irregularities, including variations in optic disc size and fundus image quality, and showed superior performance across accuracy, sensitivity, specificity, precision, and F1-score metrics. The developed automated glaucoma detection system exhibits enhanced diagnostic accuracy, efficiency, and reliability, offering significant potential for early-stage glaucoma detection and clinical decision support. Future work will involve large-scale multi-ethnic dataset validation, integration with clinical workflows, and deployment as a mobile or cloud-based screening tool.

Cardiovascular disease classification using radiomics and geometric features from cardiac CT

Ajay Mittal, Raghav Mehta, Omar Todd, Philipp Seeböck, Georg Langs, Ben Glocker

arxiv logopreprintJun 27 2025
Automatic detection and classification of Cardiovascular disease (CVD) from Computed Tomography (CT) images play an important part in facilitating better-informed clinical decisions. However, most of the recent deep learning based methods either directly work on raw CT data or utilize it in pair with anatomical cardiac structure segmentation by training an end-to-end classifier. As such, these approaches become much more difficult to interpret from a clinical perspective. To address this challenge, in this work, we break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification. Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas. These are further utilized to extract clinically interpretable radiomic features as well as deformation field based geometric features (through atlas registration) for CVD classification. Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50\%) when compared against classification model trained directly on raw CT images (67.50\%). Our code is publicly available: https://github.com/biomedia-mira/grc-net

AI Model Passport: Data and System Traceability Framework for Transparent AI in Health

Varvara Kalokyri, Nikolaos S. Tachos, Charalampos N. Kalantzopoulos, Stelios Sfakianakis, Haridimos Kondylakis, Dimitrios I. Zaridis, Sara Colantonio, Daniele Regge, Nikolaos Papanikolaou, The ProCAncer-I consortium, Konstantinos Marias, Dimitrios I. Fotiadis, Manolis Tsiknakis

arxiv logopreprintJun 27 2025
The increasing integration of Artificial Intelligence (AI) into health and biomedical systems necessitates robust frameworks for transparency, accountability, and ethical compliance. Existing frameworks often rely on human-readable, manual documentation which limits scalability, comparability, and machine interpretability across projects and platforms. They also fail to provide a unique, verifiable identity for AI models to ensure their provenance and authenticity across systems and use cases, limiting reproducibility and stakeholder trust. This paper introduces the concept of the AI Model Passport, a structured and standardized documentation framework that acts as a digital identity and verification tool for AI models. It captures essential metadata to uniquely identify, verify, trace and monitor AI models across their lifecycle - from data acquisition and preprocessing to model design, development and deployment. In addition, an implementation of this framework is presented through AIPassport, an MLOps tool developed within the ProCAncer-I EU project for medical imaging applications. AIPassport automates metadata collection, ensures proper versioning, decouples results from source scripts, and integrates with various development environments. Its effectiveness is showcased through a lesion segmentation use case using data from the ProCAncer-I dataset, illustrating how the AI Model Passport enhances transparency, reproducibility, and regulatory readiness while reducing manual effort. This approach aims to set a new standard for fostering trust and accountability in AI-driven healthcare solutions, aspiring to serve as the basis for developing transparent and regulation compliant AI systems across domains.

Automated Sella-Turcica Annotation and Mesh Alignment of 3D Stereophotographs for Craniosynostosis Patients Using a PCA-FFNN Based Approach.

Bielevelt F, Chargi N, van Aalst J, Nienhuijs M, Maal T, Delye H, de Jong G

pubmed logopapersJun 27 2025
Craniosynostosis, characterized by the premature fusion of cranial sutures, can lead to significant neurological and developmental complications, necessitating early diagnosis and precise treatment. Traditional cranial morphologic assessment has relied on CT scans, which expose infants to ionizing radiation. Recently, 3D stereophotogrammetry has emerged as a noninvasive alternative, but accurately aligning 3D photographs within standardized reference frames, such as the Sella-turcica-Nasion (S-N) frame, remains a challenge. This study proposes a novel method for predicting the Sella turcica (ST) coordinate from 3D cranial surface models using Principal Component Analysis (PCA) combined with a Feedforward Neural Network (FFNN). The accuracy of this method is compared with the conventional Computed Cranial Focal Point (CCFP) method, which has limitations, especially in cases of asymmetric cranial deformations like plagiocephaly. A data set of 153 CT scans, including 68 craniosynostosis subjects, was used to train and test the PCA-FFNN model. The results demonstrate that the PCA-FFNN approach outperforms CCFP, achieving significantly lower deviations in ST coordinate predictions (3.61 vs. 8.38 mm, P<0.001), particularly along the y-axes and z-axes. In addition, mesh realignment within the S-N reference frame showed improved accuracy with the PCA-FFNN method, evidenced by lower mean deviations and reduced dispersion in distance maps. These findings highlight the potential of the PCA-FFNN approach to provide a more reliable, noninvasive solution for cranial assessment, improving craniosynostosis follow-up and enhancing clinical outcomes.

Early prediction of adverse outcomes in liver cirrhosis using a CT-based multimodal deep learning model.

Xie N, Liang Y, Luo Z, Hu J, Ge R, Wan X, Wang C, Zou G, Guo F, Jiang Y

pubmed logopapersJun 27 2025
Early-stage cirrhosis frequently presents without symptoms, making timely identification of high-risk patients challenging. We aimed to develop a deep learning-based triple-modal fusion liver cirrhosis network (TMF-LCNet) for the prediction of adverse outcomes, offering a promising tool to enhance early risk assessment and improve clinical management strategies. This retrospective study included 243 patients with early-stage cirrhosis across two centers. Adverse outcomes were defined as the development of severe complications like ascites, hepatic encephalopathy and variceal bleeding. TMF-LCNet was developed by integrating three types of data: non-contrast abdominal CT images, radiomic features extracted from liver and spleen, and clinical text detailing laboratory parameters and adipose tissue composition measurements. TMF-LCNet was compared with conventional methods on the same dataset, and single-modality versions of TMF-LCNet were tested to determine the impact of each data type. Model effectiveness was measured using the area under the receiver operating characteristics curve (AUC) for discrimination, calibration curves for model fit, and decision curve analysis (DCA) for clinical utility. TMF-LCNet demonstrated superior predictive performance compared to conventional image-based, radiomics-based, and multimodal methods, achieving an AUC of 0.797 in the training cohort (n = 184) and 0.747 in the external test cohort (n = 59). Only TMF-LCNet exhibited robust model calibration in both cohorts. Of the three data types, the imaging modality contributed the most, as the image-only version of TMF-LCNet achieved performance closest to the complete version (AUC = 0.723 and 0.716, respectively; p > 0.05). This was followed by the text modality, with radiomics contributing the least, a pattern consistent with the clinical utility trends observed in DCA. TMF-LCNet represents an accurate and robust tool for predicting adverse outcomes in early-stage cirrhosis by integrating multiple data types. It holds potential for early identification of high-risk patients, guiding timely interventions, and ultimately improving patient prognosis.

Deep transfer learning radiomics combined with explainable machine learning for preoperative thymoma risk prediction based on CT.

Wu S, Fan L, Wu Y, Xu J, Guo Y, Zhang H, Xu Z

pubmed logopapersJun 26 2025
To develop and validate a computerized tomography (CT)‑based deep transfer learning radiomics model combined with explainable machine learning for preoperative risk prediction of thymoma. This retrospective study included 173 pathologically confirmed thymoma patients from our institution in the training group and 93 patients from two external centers in the external validation group. Tumors were classified according to the World Health Organization simplified criteria as low‑risk types (A, AB, and B1) or high‑risk types (B2 and B3). Radiomics features and deep transfer learning features were extracted from venous‑phase contrast‑enhanced CT images by using a modified Inception V3 network. Principal component analysis and least absolute shrinkage and selection operator regression identified 20 key predictors. Six classifiers-decision tree, gradient boosting machine, k‑nearest neighbors, naïve Bayes, random forest (RF), and support vector machine-were trained on five feature sets: CT imaging model, radiomics feature model, deep transfer learning feature model, combined feature model, and combined model. Interpretability was assessed with SHapley Additive exPlanations (SHAP), and an interactive web application was developed for real‑time individualized risk prediction and visualization. In the external validation group, the RF classifier achieved the highest area under the receiver operating characteristic curve (AUC) value of 0.956. In the training group, the AUC values for the CT imaging model, radiomics feature model, deep transfer learning feature model, combined feature model, and combined model were 0.684, 0.831, 0.815, 0.893, and 0.910, respectively. The corresponding AUC values in the external validation group were 0.604, 0.865, 0.880, 0.934, and 0.956, respectively. SHAP visualizations revealed the relative contribution of each feature, while the web application provided real‑time individual prediction probabilities with interpretative outputs. We developed a CT‑based deep transfer learning radiomics model combined with explainable machine learning and an interactive web application; this model achieved high accuracy and transparency for preoperative thymoma risk stratification, facilitating personalized clinical decision‑making.

Generalizable Neural Electromagnetic Inverse Scattering

Yizhe Cheng, Chunxun Tian, Haoru Wang, Wentao Zhu, Xiaoxuan Ma, Yizhou Wang

arxiv logopreprintJun 26 2025
Solving Electromagnetic Inverse Scattering Problems (EISP) is fundamental in applications such as medical imaging, where the goal is to reconstruct the relative permittivity from scattered electromagnetic field. This inverse process is inherently ill-posed and highly nonlinear, making it particularly challenging. A recent machine learning-based approach, Img-Interiors, shows promising results by leveraging continuous implicit functions. However, it requires case-specific optimization, lacks generalization to unseen data, and fails under sparse transmitter setups (e.g., with only one transmitter). To address these limitations, we revisit EISP from a physics-informed perspective, reformulating it as a two stage inverse transmission-scattering process. This formulation reveals the induced current as a generalizable intermediate representation, effectively decoupling the nonlinear scattering process from the ill-posed inverse problem. Built on this insight, we propose the first generalizable physics-driven framework for EISP, comprising a current estimator and a permittivity solver, working in an end-to-end manner. The current estimator explicitly learns the induced current as a physical bridge between the incident and scattered field, while the permittivity solver computes the relative permittivity directly from the estimated induced current. This design enables data-driven training and generalizable feed-forward prediction of relative permittivity on unseen data while maintaining strong robustness to transmitter sparsity. Extensive experiments show that our method outperforms state-of-the-art approaches in reconstruction accuracy, generalization, and robustness. This work offers a fundamentally new perspective on electromagnetic inverse scattering and represents a major step toward cost-effective practical solutions for electromagnetic imaging.

Robust Deep Learning for Myocardial Scar Segmentation in Cardiac MRI with Noisy Labels

Aida Moafi, Danial Moafi, Evgeny M. Mirkes, Gerry P. McCann, Abbas S. Alatrany, Jayanth R. Arnold, Mostafa Mehdipour Ghazi

arxiv logopreprintJun 26 2025
The accurate segmentation of myocardial scars from cardiac MRI is essential for clinical assessment and treatment planning. In this study, we propose a robust deep-learning pipeline for fully automated myocardial scar detection and segmentation by fine-tuning state-of-the-art models. The method explicitly addresses challenges of label noise from semi-automatic annotations, data heterogeneity, and class imbalance through the use of Kullback-Leibler loss and extensive data augmentation. We evaluate the model's performance on both acute and chronic cases and demonstrate its ability to produce accurate and smooth segmentations despite noisy labels. In particular, our approach outperforms state-of-the-art models like nnU-Net and shows strong generalizability in an out-of-distribution test set, highlighting its robustness across various imaging conditions and clinical tasks. These results establish a reliable foundation for automated myocardial scar quantification and support the broader clinical adoption of deep learning in cardiac imaging.

Constructing high-quality enhanced 4D-MRI with personalized modeling for liver cancer radiotherapy.

Yao Y, Chen B, Wang K, Cao Y, Zuo L, Zhang K, Chen X, Kuo M, Dai J

pubmed logopapersJun 26 2025
For magnetic resonance imaging (MRI), a short acquisition time and good image quality are incompatible. Thus, reconstructing time-resolved volumetric MRI (4D-MRI) to delineate and monitor thoracic and upper abdominal tumor movements is a challenge. Existing MRI sequences have limited applicability to 4D-MRI. A method is proposed for reconstructing high-quality personalized enhanced 4D-MR images. Low-quality 4D-MR images are scanned followed by deep learning-based personalization to generate high-quality 4D-MR images. High-speed multiphase 3D fast spoiled gradient recalled echo (FSPGR) sequences were utilized to generate low-quality enhanced free-breathing 4D-MR images and paired low-/high-quality breath-holding 4D-MR images for 58 liver cancer patients. Then, a personalized model guided by the paired breath-holding 4D-MR images was developed for each patient to cope with patient heterogeneity. The 4D-MR images generated by the personalized model were of much higher quality compared with the low-quality 4D-MRI images obtained by conventional scanning as demonstrated by significant improvements in the peak signal-to-noise ratio, structural similarity, normalized root mean square error, and cumulative probability of blur detection. The introduction of individualized information helped the personalized model demonstrate a statistically significant improvement compared to the general model (p < 0.001). The proposed method can be used to quickly reconstruct high-quality 4D-MR images and is potentially applicable to radiotherapy for liver cancer.

Exploring the Design Space of 3D MLLMs for CT Report Generation

Mohammed Baharoon, Jun Ma, Congyu Fang, Augustin Toma, Bo Wang

arxiv logopreprintJun 26 2025
Multimodal Large Language Models (MLLMs) have emerged as a promising way to automate Radiology Report Generation (RRG). In this work, we systematically investigate the design space of 3D MLLMs, including visual input representation, projectors, Large Language Models (LLMs), and fine-tuning techniques for 3D CT report generation. We also introduce two knowledge-based report augmentation methods that improve performance on the GREEN score by up to 10\%, achieving the 2nd place on the MICCAI 2024 AMOS-MM challenge. Our results on the 1,687 cases from the AMOS-MM dataset show that RRG is largely independent of the size of LLM under the same training protocol. We also show that larger volume size does not always improve performance if the original ViT was pre-trained on a smaller volume size. Lastly, we show that using a segmentation mask along with the CT volume improves performance. The code is publicly available at https://github.com/bowang-lab/AMOS-MM-Solution
Page 59 of 1691682 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.