Sort by:
Page 58 of 1691682 results

Photon-counting micro-CT scanner for deep learning-enabled small animal perfusion imaging.

Allphin AJ, Nadkarni R, Clark DP, Badea CT

pubmed logopapersJun 27 2025
In this work, we introduce a benchtop, turn-table photon-counting (PC) micro-CT scanner and highlight its application for dynamic small animal perfusion imaging.
Approach: Built on recently published hardware, the system now features a CdTe-based photon-counting detector (PCD). We validated its static spectral PC micro-CT imaging using conventional phantoms and assessed dynamic performance with a custom flow-configurable dual-compartment perfusion phantom. The phantom was scanned under varied flow conditions during injections of a low molecular weight iodinated contrast agent. In vivo mouse studies with identical injection settings demonstrated potential applications. A pretrained denoising CNN processed large multi-energy, temporal datasets (20 timepoints × 4 energies × 3 spatial dimensions), reconstructed via weighted filtered back projection. A separate CNN, trained on simulated data, performed gamma variate-based 2D perfusion mapping, evaluated qualitatively in phantom and in vivo tests.
Main Results: Full five-dimensional reconstructions were denoised using a CNN in ~3% of the time of iterative reconstruction, reducing noise in water at the highest energy threshold from 1206 HU to 86 HU. Decomposed iodine maps, which improved contrast to noise ratio from 16.4 (in the lowest energy CT images) to 29.4 (in the iodine maps), were used for perfusion analysis. The perfusion CNN outperformed pixelwise gamma variate fitting by ~33%, with a test set error of 0.04 vs. 0.06 in blood flow index (BFI) maps, and quantified linear BFI changes in the phantom with a coefficient of determination of 0.98.
Significance: This work underscores the PC micro-CT scanner's utility for high-throughput small animal perfusion imaging, leveraging spectral PC micro-CT and iodine decomposition. It provides a versatile platform for preclinical vascular research and advanced, time-resolved studies of disease models and therapeutic interventions.

Prospective quality control in chest radiography based on the reconstructed 3D human body.

Tan Y, Ye Z, Ye J, Hou Y, Li S, Liang Z, Li H, Tang J, Xia C, Li Z

pubmed logopapersJun 27 2025
Chest radiography requires effective quality control (QC) to reduce high retake rates. However, existing QC measures are all retrospective and implemented after exposure, often necessitating retakes when image quality fails to meet standards and thereby increasing radiation exposure to patients. To address this issue, we proposed a 3D human body (3D-HB) reconstruction algorithm to realize prospective QC. Our objective was to investigate the feasibility of using the reconstructed 3D-HB for prospective QC in chest radiography and evaluate its impact on retake rates.&#xD;Approach: This prospective study included patients indicated for posteroanterior (PA) and lateral (LA) chest radiography in May 2024. A 3D-HB reconstruction algorithm integrating the SMPL-X model and the HybrIK-X algorithm was proposed to convert patients' 2D images into 3D-HBs. QC metrics regarding patient positioning and collimation were assessed using chest radiographs (reference standard) and 3D-HBs, with results compared using ICCs, linear regression, and receiver operating characteristic curves. For retake rate evaluation, a real-time 3D-HB visualization interface was developed and chest radiography was conducted in two four-week phases: the first without prospective QC and the second with prospective QC. Retake rates between the two phases were compared using chi-square tests. &#xD;Main results: 324 participants were included (mean age, 42 years±19 [SD]; 145 men; 324 PA and 294 LA examinations). The ICCs for the clavicle and midaxillary line angles were 0.80 and 0.78, respectively. Linear regression showed good relation for clavicle angles (R2: 0.655) and midaxillary line angles (R2: 0.616). In PA chest radiography, the AUCs of 3D-HBs were 0.89, 0.87, 0.91 and 0.92 for assessing scapula rotation, lateral tilt, centered positioning and central X-ray alignment respectively, with 97% accuracy in collimation assessment. In LA chest radiography, the AUCs of 3D-HBs were 0.87, 0.84, 0.87 and 0.88 for assessing arms raised, chest rotation, centered positioning and central X-ray alignment respectively, with 94% accuracy in collimation assessment. In retake rate evaluation, 3995 PA and 3295 LA chest radiographs were recorded. The implementation of prospective QC based on the 3D-HB reduced retake rates from 8.6% to 3.5% (PA) and 19.6% to 4.9% (LA) (p < .001).&#xD;Significance: The reconstructed 3D-HB is a feasible tool for prospective QC in chest radiography, providing real-time feedback on patient positioning and collimation before exposure. Prospective QC based on the reconstructed 3D-HB has the potential to reshape the future of radiography QC by significantly reducing retake rates and improving clinical standardization.

AI Model Passport: Data and System Traceability Framework for Transparent AI in Health

Varvara Kalokyri, Nikolaos S. Tachos, Charalampos N. Kalantzopoulos, Stelios Sfakianakis, Haridimos Kondylakis, Dimitrios I. Zaridis, Sara Colantonio, Daniele Regge, Nikolaos Papanikolaou, The ProCAncer-I consortium, Konstantinos Marias, Dimitrios I. Fotiadis, Manolis Tsiknakis

arxiv logopreprintJun 27 2025
The increasing integration of Artificial Intelligence (AI) into health and biomedical systems necessitates robust frameworks for transparency, accountability, and ethical compliance. Existing frameworks often rely on human-readable, manual documentation which limits scalability, comparability, and machine interpretability across projects and platforms. They also fail to provide a unique, verifiable identity for AI models to ensure their provenance and authenticity across systems and use cases, limiting reproducibility and stakeholder trust. This paper introduces the concept of the AI Model Passport, a structured and standardized documentation framework that acts as a digital identity and verification tool for AI models. It captures essential metadata to uniquely identify, verify, trace and monitor AI models across their lifecycle - from data acquisition and preprocessing to model design, development and deployment. In addition, an implementation of this framework is presented through AIPassport, an MLOps tool developed within the ProCAncer-I EU project for medical imaging applications. AIPassport automates metadata collection, ensures proper versioning, decouples results from source scripts, and integrates with various development environments. Its effectiveness is showcased through a lesion segmentation use case using data from the ProCAncer-I dataset, illustrating how the AI Model Passport enhances transparency, reproducibility, and regulatory readiness while reducing manual effort. This approach aims to set a new standard for fostering trust and accountability in AI-driven healthcare solutions, aspiring to serve as the basis for developing transparent and regulation compliant AI systems across domains.

Cardiovascular disease classification using radiomics and geometric features from cardiac CT

Ajay Mittal, Raghav Mehta, Omar Todd, Philipp Seeböck, Georg Langs, Ben Glocker

arxiv logopreprintJun 27 2025
Automatic detection and classification of Cardiovascular disease (CVD) from Computed Tomography (CT) images play an important part in facilitating better-informed clinical decisions. However, most of the recent deep learning based methods either directly work on raw CT data or utilize it in pair with anatomical cardiac structure segmentation by training an end-to-end classifier. As such, these approaches become much more difficult to interpret from a clinical perspective. To address this challenge, in this work, we break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification. Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas. These are further utilized to extract clinically interpretable radiomic features as well as deformation field based geometric features (through atlas registration) for CVD classification. Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50\%) when compared against classification model trained directly on raw CT images (67.50\%). Our code is publicly available: https://github.com/biomedia-mira/grc-net

Reasoning in machine vision: learning to think fast and slow

Shaheer U. Saeed, Yipei Wang, Veeru Kasivisvanathan, Brian R. Davidson, Matthew J. Clarkson, Yipeng Hu, Daniel C. Alexander

arxiv logopreprintJun 27 2025
Reasoning is a hallmark of human intelligence, enabling adaptive decision-making in complex and unfamiliar scenarios. In contrast, machine intelligence remains bound to training data, lacking the ability to dynamically refine solutions at inference time. While some recent advances have explored reasoning in machines, these efforts are largely limited to verbal domains such as mathematical problem-solving, where explicit rules govern step-by-step reasoning. Other critical real-world tasks - including visual perception, spatial reasoning, and radiological diagnosis - require non-verbal reasoning, which remains an open challenge. Here we present a novel learning paradigm that enables machine reasoning in vision by allowing performance improvement with increasing thinking time (inference-time compute), even under conditions where labelled data is very limited. Inspired by dual-process theories of human cognition in psychology, our approach integrates a fast-thinking System I module for familiar tasks, with a slow-thinking System II module that iteratively refines solutions using self-play reinforcement learning. This paradigm mimics human reasoning by proposing, competing over, and refining solutions in data-scarce scenarios. We demonstrate superior performance through extended thinking time, compared not only to large-scale supervised learning but also foundation models and even human experts, in real-world vision tasks. These tasks include computer-vision benchmarks and cancer localisation on medical images across five organs, showcasing transformative potential for non-verbal machine reasoning.

Towards Scalable and Robust White Matter Lesion Localization via Multimodal Deep Learning

Julia Machnio, Sebastian Nørgaard Llambias, Mads Nielsen, Mostafa Mehdipour Ghazi

arxiv logopreprintJun 27 2025
White matter hyperintensities (WMH) are radiological markers of small vessel disease and neurodegeneration, whose accurate segmentation and spatial localization are crucial for diagnosis and monitoring. While multimodal MRI offers complementary contrasts for detecting and contextualizing WM lesions, existing approaches often lack flexibility in handling missing modalities and fail to integrate anatomical localization efficiently. We propose a deep learning framework for WM lesion segmentation and localization that operates directly in native space using single- and multi-modal MRI inputs. Our study evaluates four input configurations: FLAIR-only, T1-only, concatenated FLAIR and T1, and a modality-interchangeable setup. It further introduces a multi-task model for jointly predicting lesion and anatomical region masks to estimate region-wise lesion burden. Experiments conducted on the MICCAI WMH Segmentation Challenge dataset demonstrate that multimodal input significantly improves the segmentation performance, outperforming unimodal models. While the modality-interchangeable setting trades accuracy for robustness, it enables inference in cases with missing modalities. Joint lesion-region segmentation using multi-task learning was less effective than separate models, suggesting representational conflict between tasks. Our findings highlight the utility of multimodal fusion for accurate and robust WMH analysis, and the potential of joint modeling for integrated predictions.

Noise-Inspired Diffusion Model for Generalizable Low-Dose CT Reconstruction

Qi Gao, Zhihao Chen, Dong Zeng, Junping Zhang, Jianhua Ma, Hongming Shan

arxiv logopreprintJun 27 2025
The generalization of deep learning-based low-dose computed tomography (CT) reconstruction models to doses unseen in the training data is important and remains challenging. Previous efforts heavily rely on paired data to improve the generalization performance and robustness through collecting either diverse CT data for re-training or a few test data for fine-tuning. Recently, diffusion models have shown promising and generalizable performance in low-dose CT (LDCT) reconstruction, however, they may produce unrealistic structures due to the CT image noise deviating from Gaussian distribution and imprecise prior information from the guidance of noisy LDCT images. In this paper, we propose a noise-inspired diffusion model for generalizable LDCT reconstruction, termed NEED, which tailors diffusion models for noise characteristics of each domain. First, we propose a novel shifted Poisson diffusion model to denoise projection data, which aligns the diffusion process with the noise model in pre-log LDCT projections. Second, we devise a doubly guided diffusion model to refine reconstructed images, which leverages LDCT images and initial reconstructions to more accurately locate prior information and enhance reconstruction fidelity. By cascading these two diffusion models for dual-domain reconstruction, our NEED requires only normal-dose data for training and can be effectively extended to various unseen dose levels during testing via a time step matching strategy. Extensive qualitative, quantitative, and segmentation-based evaluations on two datasets demonstrate that our NEED consistently outperforms state-of-the-art methods in reconstruction and generalization performance. Source code is made available at https://github.com/qgao21/NEED.

High Resolution Isotropic 3D Cine imaging with Automated Segmentation using Concatenated 2D Real-time Imaging and Deep Learning

Mark Wrobel, Michele Pascale, Tina Yao, Ruaraidh Campbell, Elena Milano, Michael Quail, Jennifer Steeden, Vivek Muthurangu

arxiv logopreprintJun 27 2025
Background: Conventional cardiovascular magnetic resonance (CMR) in paediatric and congenital heart disease uses 2D, breath-hold, balanced steady state free precession (bSSFP) cine imaging for assessment of function and cardiac-gated, respiratory-navigated, static 3D bSSFP whole-heart imaging for anatomical assessment. Our aim is to concatenate a stack 2D free-breathing real-time cines and use Deep Learning (DL) to create an isotropic a fully segmented 3D cine dataset from these images. Methods: Four DL models were trained on open-source data that performed: a) Interslice contrast correction; b) Interslice respiratory motion correction; c) Super-resolution (slice direction); and d) Segmentation of right and left atria and ventricles (RA, LA, RV, and LV), thoracic aorta (Ao) and pulmonary arteries (PA). In 10 patients undergoing routine cardiovascular examination, our method was validated on prospectively acquired sagittal stacks of real-time cine images. Quantitative metrics (ventricular volumes and vessel diameters) and image quality of the 3D cines were compared to conventional breath hold cine and whole heart imaging. Results: All real-time data were successfully transformed into 3D cines with a total post-processing time of <1 min in all cases. There were no significant biases in any LV or RV metrics with reasonable limits of agreement and correlation. There is also reasonable agreement for all vessel diameters, although there was a small but significant overestimation of RPA diameter. Conclusion: We have demonstrated the potential of creating a 3D-cine data from concatenated 2D real-time cine images using a series of DL models. Our method has short acquisition and reconstruction times with fully segmented data being available within 2 minutes. The good agreement with conventional imaging suggests that our method could help to significantly speed up CMR in clinical practice.

BrainMT: A Hybrid Mamba-Transformer Architecture for Modeling Long-Range Dependencies in Functional MRI Data

Arunkumar Kannan, Martin A. Lindquist, Brian Caffo

arxiv logopreprintJun 27 2025
Recent advances in deep learning have made it possible to predict phenotypic measures directly from functional magnetic resonance imaging (fMRI) brain volumes, sparking significant interest in the neuroimaging community. However, existing approaches, primarily based on convolutional neural networks or transformer architectures, often struggle to model the complex relationships inherent in fMRI data, limited by their inability to capture long-range spatial and temporal dependencies. To overcome these shortcomings, we introduce BrainMT, a novel hybrid framework designed to efficiently learn and integrate long-range spatiotemporal attributes in fMRI data. Our framework operates in two stages: (1) a bidirectional Mamba block with a temporal-first scanning mechanism to capture global temporal interactions in a computationally efficient manner; and (2) a transformer block leveraging self-attention to model global spatial relationships across the deep features processed by the Mamba block. Extensive experiments on two large-scale public datasets, UKBioBank and the Human Connectome Project, demonstrate that BrainMT achieves state-of-the-art performance on both classification (sex prediction) and regression (cognitive intelligence prediction) tasks, outperforming existing methods by a significant margin. Our code and implementation details will be made publicly available at this https://github.com/arunkumar-kannan/BrainMT-fMRI

Regional Cortical Thinning and Area Reduction Are Associated with Cognitive Impairment in Hemodialysis Patients.

Chen HJ, Qiu J, Qi Y, Guo Y, Zhang Z, Qin H, Wu F, Chen F

pubmed logopapersJun 27 2025
Magnetic resonance imaging (MRI) has shown that patients with end-stage renal disease have decreased gray matter volume and density. However, the cortical area and thickness in patients on hemodialysis are uncertain, and the relationship between patients' cognition and cortical alterations remains unclear. Thirty-six hemodialysis patients and 25 age- and sex-matched healthy controls were enrolled in this study and underwent brain MRI scans and neuropsychological assessments. According to the Desikan-Killiany atlas, the brain is divided into 68 regions. Using FreeSurfer software, we analyzed the differences in cortical area and thickness of each region between groups. Machine learning-based classification was also used to differentiate hemodialysis patients from healthy individuals. The patients exhibited decreased cortical thickness in the frontal and temporal regions, including the left bankssts, left lingual gyrus, left pars triangularis, bilateral superior temporal gyrus, and right pars opercularis and decreased cortical area in the left rostral middle frontal gyrus, left superior frontal gyrus, right fusiform gyrus, right pars orbitalis and right superior frontal gyrus. Decreased cortical thickness was positively associated with poorer scores on the neuropsychological tests and increased uric acid and urea levels. Cortical thickness pattern allowed differentiating the patients from the controls with 96.7% accuracy (97.5% sensitivity, 95.0% specificity, 97.5% precision, and AUC: 0.983) on the support vector machine analysis. Patients on hemodialysis exhibited decreased cortical area and thickness, which was associated with poorer cognition and uremic toxins.
Page 58 of 1691682 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.