Sort by:
Page 56 of 1341332 results

A Benchmark Framework for the Right Atrium Cavity Segmentation From LGE-MRIs.

Bai J, Zhu J, Chen Z, Yang Z, Lu Y, Li L, Li Q, Wang W, Zhang H, Wang K, Gan J, Zhao J, Lu H, Li S, Huang J, Chen X, Zhang X, Xu X, Li L, Tian Y, Campello VM, Lekadir K

pubmed logopapersJul 22 2025
The right atrium (RA) is critical for cardiac hemodynamics but is often overlooked in clinical diagnostics. This study presents a benchmark framework for RA cavity segmentation from late gadolinium-enhanced magnetic resonance imaging (LGE-MRIs), leveraging a two-stage strategy and a novel 3D deep learning network, RASnet. The architecture addresses challenges in class imbalance and anatomical variability by incorporating multi-path input, multi-scale feature fusion modules, Vision Transformers, context interaction mechanisms, and deep supervision. Evaluated on datasets comprising 354 LGE-MRIs, RASnet achieves SOTA performance with a Dice score of 92.19% on a primary dataset and demonstrates robust generalizability on an independent dataset. The proposed framework establishes a benchmark for RA cavity segmentation, enabling accurate and efficient analysis for cardiac imaging applications. Open-source code (https://github.com/zjinw/RAS) and data (https://zenodo.org/records/15524472) are provided to facilitate further research and clinical adoption.

SarAdapter: Prioritizing Attention on Semantic-Aware Representative Tokens for Enhanced Medical Image Segmentation.

Jiang W, Li Y, Liu Z, An L, Quellec G, Ou C

pubmed logopapersJul 22 2025
Transformer-based segmentation methods exhibit considerable potential in medical image analysis. However, their improved performance often comes with increased computational complexity, limiting their application in resource-constrained medical settings. Prior methods follow two independent tracks: (i) accelerating existing networks via semantic-aware routing, and (ii) optimizing token adapter design to enhance network performance. Despite directness, they encounter unavoidable defects (e.g., inflexible acceleration techniques or non-discriminative processing) limiting further improvements of quality-complexity trade-off. To address these shortcomings, we integrate these schemes by proposing the semantic-aware adapter (SarAdapter), which employs a semantic-based routing strategy, leveraging neural operators (ViT and CNN) of varying complexities. Specifically, it merges semantically similar tokens volume into low-resolution regions while preserving semantically distinct tokens as high-resolution regions. Additionally, we introduce a Mixed-adapter unit, which adaptively selects convolutional operators of varying complexities to better model regions at different scales. We evaluate our method on four medical datasets from three modalities and show that it achieves a superior balance between accuracy, model size, and efficiency. Notably, our proposed method achieves state-of-the-art segmentation quality on the Synapse dataset while reducing the number of tokens by 65.6%, signifying a substantial improvement in the efficiency of ViTs for the segmentation task.

Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement

Cedric Zöllner, Simon Reiß, Alexander Jaus, Amroalalaa Sholi, Ralf Sodian, Rainer Stiefelhagen

arxiv logopreprintJul 22 2025
When preoperative planning for surgeries is conducted on the basis of medical images, artificial intelligence methods can support medical doctors during assessment. In this work, we consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks, that may be supported via semantic segmentation models by making relevant anatomical structures measurable in computed tomography scans. We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans. Furthermore, we propose an adaptation to the loss function in training these segmentation models and through this achieve a +1.27% Dice increase in performance. Our fine-grained TAVR-relevant pseudo-labels and the computed tomography scans we build upon are available at https://doi.org/10.5281/zenodo.16274176.

Robust Noisy Pseudo-label Learning for Semi-supervised Medical Image Segmentation Using Diffusion Model

Lin Xi, Yingliang Ma, Cheng Wang, Sandra Howell, Aldo Rinaldi, Kawal S. Rhode

arxiv logopreprintJul 22 2025
Obtaining pixel-level annotations in the medical domain is both expensive and time-consuming, often requiring close collaboration between clinical experts and developers. Semi-supervised medical image segmentation aims to leverage limited annotated data alongside abundant unlabeled data to achieve accurate segmentation. However, existing semi-supervised methods often struggle to structure semantic distributions in the latent space due to noise introduced by pseudo-labels. In this paper, we propose a novel diffusion-based framework for semi-supervised medical image segmentation. Our method introduces a constraint into the latent structure of semantic labels during the denoising diffusion process by enforcing prototype-based contrastive consistency. Rather than explicitly delineating semantic boundaries, the model leverages class prototypes centralized semantic representations in the latent space as anchors. This strategy improves the robustness of dense predictions, particularly in the presence of noisy pseudo-labels. We also introduce a new publicly available benchmark: Multi-Object Segmentation in X-ray Angiography Videos (MOSXAV), which provides detailed, manually annotated segmentation ground truth for multiple anatomical structures in X-ray angiography videos. Extensive experiments on the EndoScapes2023 and MOSXAV datasets demonstrate that our method outperforms state-of-the-art medical image segmentation approaches under the semi-supervised learning setting. This work presents a robust and data-efficient diffusion model that offers enhanced flexibility and strong potential for a wide range of clinical applications.

DualSwinUnet++: An enhanced Swin-Unet architecture with dual decoders for PTMC segmentation.

Dialameh M, Rajabzadeh H, Sadeghi-Goughari M, Sim JS, Kwon HJ

pubmed logopapersJul 22 2025
Precise segmentation of papillary thyroid microcarcinoma (PTMC) during ultrasound-guided radiofrequency ablation (RFA) is critical for effective treatment but remains challenging due to acoustic artifacts, small lesion size, and anatomical variability. In this study, we propose DualSwinUnet++, a dual-decoder transformer-based architecture designed to enhance PTMC segmentation by incorporating thyroid gland context. DualSwinUnet++ employs independent linear projection heads for each decoder and a residual information flow mechanism that passes intermediate features from the first (thyroid) decoder to the second (PTMC) decoder via concatenation and transformation. These design choices allow the model to condition tumor prediction explicitly on gland morphology without shared gradient interference. Trained on a clinical ultrasound dataset with 691 annotated RFA images and evaluated against state-of-the-art models, DualSwinUnet++ achieves superior Dice and Jaccard scores while maintaining sub-200ms inference latency. The results demonstrate the model's suitability for near real-time surgical assistance and its effectiveness in improving segmentation accuracy in challenging PTMC cases.

MLRU++: Multiscale Lightweight Residual UNETR++ with Attention for Efficient 3D Medical Image Segmentation

Nand Kumar Yadav, Rodrigue Rizk, Willium WC Chen, KC

arxiv logopreprintJul 22 2025
Accurate and efficient medical image segmentation is crucial but challenging due to anatomical variability and high computational demands on volumetric data. Recent hybrid CNN-Transformer architectures achieve state-of-the-art results but add significant complexity. In this paper, we propose MLRU++, a Multiscale Lightweight Residual UNETR++ architecture designed to balance segmentation accuracy and computational efficiency. It introduces two key innovations: a Lightweight Channel and Bottleneck Attention Module (LCBAM) that enhances contextual feature encoding with minimal overhead, and a Multiscale Bottleneck Block (M2B) in the decoder that captures fine-grained details via multi-resolution feature aggregation. Experiments on four publicly available benchmark datasets (Synapse, BTCV, ACDC, and Decathlon Lung) demonstrate that MLRU++ achieves state-of-the-art performance, with average Dice scores of 87.57% (Synapse), 93.00% (ACDC), and 81.12% (Lung). Compared to existing leading models, MLRU++ improves Dice scores by 5.38% and 2.12% on Synapse and ACDC, respectively, while significantly reducing parameter count and computational cost. Ablation studies evaluating LCBAM and M2B further confirm the effectiveness of the proposed architectural components. Results suggest that MLRU++ offers a practical and high-performing solution for 3D medical image segmentation tasks. Source code is available at: https://github.com/1027865/MLRUPP

LA-Seg: Disentangled sinogram pattern-guided transformer for lesion segmentation in limited-angle computed tomography.

Yoon JH, Lee YJ, Yoo SB

pubmed logopapersJul 21 2025
Limited-angle computed tomography (LACT) offers patient-friendly benefits, such as rapid scanning and reduced radiation exposure. However, the incompleteness of data in LACT often causes notable artifacts, posing challenges for precise medical interpretation. Although numerous approaches have been introduced to reconstruct LACT images into complete computed tomography (CT) scans, they focus on improving image quality and operate separately from lesion segmentation models, often overlooking essential lesion-specific information. This is because reconstruction models are primarily optimized to satisfy overall image quality rather than local lesion-specific regions, in a non-end-to-end setup where each component is optimized independently and may not contribute to reaching the global minimum of the overall objective function. To address this problem, we propose LA-Seg, a transformer-based segmentation model using the sinogram domain of LACT data. The LA-Seg method uses an auxiliary reconstruction task to estimates incomplete sinogram regions to enhance segmentation robustness. Applying transformers adapted from video prediction models captures the spatial structure and sequential patterns in sinograms and reconstructs features in incomplete regions using a disentangled representation guided by distinctive patterns. We propose contrastive abnormal feature loss to distinguish between normal and abnormal regions better. The experimental results demonstrate that LA-Seg consistently surpasses existing medical segmentation approaches in diverse LACT conditions. The source code is provided at https://github.com/jhyoon964/LA-Seg.

A Study of Anatomical Priors for Deep Learning-Based Segmentation of Pheochromocytoma in Abdominal CT

Tanjin Taher Toma, Tejas Sudharshan Mathai, Bikash Santra, Pritam Mukherjee, Jianfei Liu, Wesley Jong, Darwish Alabyad, Vivek Batheja, Abhishek Jha, Mayank Patel, Darko Pucar, Jayadira del Rivero, Karel Pacak, Ronald M. Summers

arxiv logopreprintJul 21 2025
Accurate segmentation of pheochromocytoma (PCC) in abdominal CT scans is essential for tumor burden estimation, prognosis, and treatment planning. It may also help infer genetic clusters, reducing reliance on expensive testing. This study systematically evaluates anatomical priors to identify configurations that improve deep learning-based PCC segmentation. We employed the nnU-Net framework to evaluate eleven annotation strategies for accurate 3D segmentation of pheochromocytoma, introducing a set of novel multi-class schemes based on organ-specific anatomical priors. These priors were derived from adjacent organs commonly surrounding adrenal tumors (e.g., liver, spleen, kidney, aorta, adrenal gland, and pancreas), and were compared against a broad body-region prior used in previous work. The framework was trained and tested on 105 contrast-enhanced CT scans from 91 patients at the NIH Clinical Center. Performance was measured using Dice Similarity Coefficient (DSC), Normalized Surface Distance (NSD), and instance-wise F1 score. Among all strategies, the Tumor + Kidney + Aorta (TKA) annotation achieved the highest segmentation accuracy, significantly outperforming the previously used Tumor + Body (TB) annotation across DSC (p = 0.0097), NSD (p = 0.0110), and F1 score (25.84% improvement at an IoU threshold of 0.5), measured on a 70-30 train-test split. The TKA model also showed superior tumor burden quantification (R^2 = 0.968) and strong segmentation across all genetic subtypes. In five-fold cross-validation, TKA consistently outperformed TB across IoU thresholds (0.1 to 0.5), reinforcing its robustness and generalizability. These findings highlight the value of incorporating relevant anatomical context into deep learning models to achieve precise PCC segmentation, offering a valuable tool to support clinical assessment and longitudinal disease monitoring in PCC patients.

Identifying signatures of image phenotypes to track treatment response in liver disease.

Perkonigg M, Bastati N, Ba-Ssalamah A, Mesenbrink P, Goehler A, Martic M, Zhou X, Trauner M, Langs G

pubmed logopapersJul 21 2025
Quantifiable image patterns associated with disease progression and treatment response are critical tools for guiding individual treatment, and for developing novel therapies. Here, we show that unsupervised machine learning can identify a pattern vocabulary of liver tissue in magnetic resonance images that quantifies treatment response in diffuse liver disease. Deep clustering networks simultaneously encode and cluster patches of medical images into a low-dimensional latent space to establish a tissue vocabulary. The resulting tissue types capture differential tissue change and its location in the liver associated with treatment response. We demonstrate the utility of the vocabulary in a randomized controlled trial cohort of patients with nonalcoholic steatohepatitis. First, we use the vocabulary to compare longitudinal liver change in a placebo and a treatment cohort. Results show that the method identifies specific liver tissue change pathways associated with treatment and enables a better separation between treatment groups than established non-imaging measures. Moreover, we show that the vocabulary can predict biopsy derived features from non-invasive imaging data. We validate the method in a separate replication cohort to demonstrate the applicability of the proposed method.

Latent Space Synergy: Text-Guided Data Augmentation for Direct Diffusion Biomedical Segmentation

Muhammad Aqeel, Maham Nazir, Zanxi Ruan, Francesco Setti

arxiv logopreprintJul 21 2025
Medical image segmentation suffers from data scarcity, particularly in polyp detection where annotation requires specialized expertise. We present SynDiff, a framework combining text-guided synthetic data generation with efficient diffusion-based segmentation. Our approach employs latent diffusion models to generate clinically realistic synthetic polyps through text-conditioned inpainting, augmenting limited training data with semantically diverse samples. Unlike traditional diffusion methods requiring iterative denoising, we introduce direct latent estimation enabling single-step inference with T x computational speedup. On CVC-ClinicDB, SynDiff achieves 96.0% Dice and 92.9% IoU while maintaining real-time capability suitable for clinical deployment. The framework demonstrates that controlled synthetic augmentation improves segmentation robustness without distribution shift. SynDiff bridges the gap between data-hungry deep learning models and clinical constraints, offering an efficient solution for deployment in resourcelimited medical settings.
Page 56 of 1341332 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.