Sort by:
Page 53 of 2252247 results

Three-dimensional end-to-end deep learning for brain MRI analysis

Radhika Juglan, Marta Ligero, Zunamys I. Carrero, Asier Rabasco, Tim Lenz, Leo Misera, Gregory Patrick Veldhuizen, Paul Kuntke, Hagen H. Kitzler, Sven Nebelung, Daniel Truhn, Jakob Nikolas Kather

arxiv logopreprintJun 30 2025
Deep learning (DL) methods are increasingly outperforming classical approaches in brain imaging, yet their generalizability across diverse imaging cohorts remains inadequately assessed. As age and sex are key neurobiological markers in clinical neuroscience, influencing brain structure and disease risk, this study evaluates three of the existing three-dimensional architectures, namely Simple Fully Connected Network (SFCN), DenseNet, and Shifted Window (Swin) Transformers, for age and sex prediction using T1-weighted MRI from four independent cohorts: UK Biobank (UKB, n=47,390), Dallas Lifespan Brain Study (DLBS, n=132), Parkinson's Progression Markers Initiative (PPMI, n=108 healthy controls), and Information eXtraction from Images (IXI, n=319). We found that SFCN consistently outperformed more complex architectures with AUC of 1.00 [1.00-1.00] in UKB (internal test set) and 0.85-0.91 in external test sets for sex classification. For the age prediction task, SFCN demonstrated a mean absolute error (MAE) of 2.66 (r=0.89) in UKB and 4.98-5.81 (r=0.55-0.70) across external datasets. Pairwise DeLong and Wilcoxon signed-rank tests with Bonferroni corrections confirmed SFCN's superiority over Swin Transformer across most cohorts (p<0.017, for three comparisons). Explainability analysis further demonstrates the regional consistency of model attention across cohorts and specific to each task. Our findings reveal that simpler convolutional networks outperform the denser and more complex attention-based DL architectures in brain image analysis by demonstrating better generalizability across different datasets.

MDPG: Multi-domain Diffusion Prior Guidance for MRI Reconstruction

Lingtong Zhang, Mengdie Song, Xiaohan Hao, Huayu Mai, Bensheng Qiu

arxiv logopreprintJun 30 2025
Magnetic Resonance Imaging (MRI) reconstruction is essential in medical diagnostics. As the latest generative models, diffusion models (DMs) have struggled to produce high-fidelity images due to their stochastic nature in image domains. Latent diffusion models (LDMs) yield both compact and detailed prior knowledge in latent domains, which could effectively guide the model towards more effective learning of the original data distribution. Inspired by this, we propose Multi-domain Diffusion Prior Guidance (MDPG) provided by pre-trained LDMs to enhance data consistency in MRI reconstruction tasks. Specifically, we first construct a Visual-Mamba-based backbone, which enables efficient encoding and reconstruction of under-sampled images. Then pre-trained LDMs are integrated to provide conditional priors in both latent and image domains. A novel Latent Guided Attention (LGA) is proposed for efficient fusion in multi-level latent domains. Simultaneously, to effectively utilize a prior in both the k-space and image domain, under-sampled images are fused with generated full-sampled images by the Dual-domain Fusion Branch (DFB) for self-adaption guidance. Lastly, to further enhance the data consistency, we propose a k-space regularization strategy based on the non-auto-calibration signal (NACS) set. Extensive experiments on two public MRI datasets fully demonstrate the effectiveness of the proposed methodology. The code is available at https://github.com/Zolento/MDPG.

Artificial Intelligence-assisted Pixel-level Lung (APL) Scoring for Fast and Accurate Quantification in Ultra-short Echo-time MRI

Bowen Xin, Rohan Hickey, Tamara Blake, Jin Jin, Claire E Wainwright, Thomas Benkert, Alto Stemmer, Peter Sly, David Coman, Jason Dowling

arxiv logopreprintJun 30 2025
Lung magnetic resonance imaging (MRI) with ultrashort echo-time (UTE) represents a recent breakthrough in lung structure imaging, providing image resolution and quality comparable to computed tomography (CT). Due to the absence of ionising radiation, MRI is often preferred over CT in paediatric diseases such as cystic fibrosis (CF), one of the most common genetic disorders in Caucasians. To assess structural lung damage in CF imaging, CT scoring systems provide valuable quantitative insights for disease diagnosis and progression. However, few quantitative scoring systems are available in structural lung MRI (e.g., UTE-MRI). To provide fast and accurate quantification in lung MRI, we investigated the feasibility of novel Artificial intelligence-assisted Pixel-level Lung (APL) scoring for CF. APL scoring consists of 5 stages, including 1) image loading, 2) AI lung segmentation, 3) lung-bounded slice sampling, 4) pixel-level annotation, and 5) quantification and reporting. The results shows that our APL scoring took 8.2 minutes per subject, which was more than twice as fast as the previous grid-level scoring. Additionally, our pixel-level scoring was statistically more accurate (p=0.021), while strongly correlating with grid-level scoring (R=0.973, p=5.85e-9). This tool has great potential to streamline the workflow of UTE lung MRI in clinical settings, and be extended to other structural lung MRI sequences (e.g., BLADE MRI), and for other lung diseases (e.g., bronchopulmonary dysplasia).

Contrastive Learning with Diffusion Features for Weakly Supervised Medical Image Segmentation

Dewen Zeng, Xinrong Hu, Yu-Jen Chen, Yawen Wu, Xiaowei Xu, Yiyu Shi

arxiv logopreprintJun 30 2025
Weakly supervised semantic segmentation (WSSS) methods using class labels often rely on class activation maps (CAMs) to localize objects. However, traditional CAM-based methods struggle with partial activations and imprecise object boundaries due to optimization discrepancies between classification and segmentation. Recently, the conditional diffusion model (CDM) has been used as an alternative for generating segmentation masks in WSSS, leveraging its strong image generation capabilities tailored to specific class distributions. By modifying or perturbing the condition during diffusion sampling, the related objects can be highlighted in the generated images. Yet, the saliency maps generated by CDMs are prone to noise from background alterations during reverse diffusion. To alleviate the problem, we introduce Contrastive Learning with Diffusion Features (CLDF), a novel method that uses contrastive learning to train a pixel decoder to map the diffusion features from a frozen CDM to a low-dimensional embedding space for segmentation. Specifically, we integrate gradient maps generated from CDM external classifier with CAMs to identify foreground and background pixels with fewer false positives/negatives for contrastive learning, enabling robust pixel embedding learning. Experimental results on four segmentation tasks from two public medical datasets demonstrate that our method significantly outperforms existing baselines.

FD-DiT: Frequency Domain-Directed Diffusion Transformer for Low-Dose CT Reconstruction

Qiqing Liu, Guoquan Wei, Zekun Zhou, Yiyang Wen, Liu Shi, Qiegen Liu

arxiv logopreprintJun 30 2025
Low-dose computed tomography (LDCT) reduces radiation exposure but suffers from image artifacts and loss of detail due to quantum and electronic noise, potentially impacting diagnostic accuracy. Transformer combined with diffusion models has been a promising approach for image generation. Nevertheless, existing methods exhibit limitations in preserving finegrained image details. To address this issue, frequency domain-directed diffusion transformer (FD-DiT) is proposed for LDCT reconstruction. FD-DiT centers on a diffusion strategy that progressively introduces noise until the distribution statistically aligns with that of LDCT data, followed by denoising processing. Furthermore, we employ a frequency decoupling technique to concentrate noise primarily in high-frequency domain, thereby facilitating effective capture of essential anatomical structures and fine details. A hybrid denoising network is then utilized to optimize the overall data reconstruction process. To enhance the capability in recognizing high-frequency noise, we incorporate sliding sparse local attention to leverage the sparsity and locality of shallow-layer information, propagating them via skip connections for improving feature representation. Finally, we propose a learnable dynamic fusion strategy for optimal component integration. Experimental results demonstrate that at identical dose levels, LDCT images reconstructed by FD-DiT exhibit superior noise and artifact suppression compared to state-of-the-art methods.

GUSL: A Novel and Efficient Machine Learning Model for Prostate Segmentation on MRI

Jiaxin Yang, Vasileios Magoulianitis, Catherine Aurelia Christie Alexander, Jintang Xue, Masatomo Kaneko, Giovanni Cacciamani, Andre Abreu, Vinay Duddalwar, C. -C. Jay Kuo, Inderbir S. Gill, Chrysostomos Nikias

arxiv logopreprintJun 30 2025
Prostate and zonal segmentation is a crucial step for clinical diagnosis of prostate cancer (PCa). Computer-aided diagnosis tools for prostate segmentation are based on the deep learning (DL) paradigm. However, deep neural networks are perceived as "black-box" solutions by physicians, thus making them less practical for deployment in the clinical setting. In this paper, we introduce a feed-forward machine learning model, named Green U-shaped Learning (GUSL), suitable for medical image segmentation without backpropagation. GUSL introduces a multi-layer regression scheme for coarse-to-fine segmentation. Its feature extraction is based on a linear model, which enables seamless interpretability during feature extraction. Also, GUSL introduces a mechanism for attention on the prostate boundaries, which is an error-prone region, by employing regression to refine the predictions through residue correction. In addition, a two-step pipeline approach is used to mitigate the class imbalance, an issue inherent in medical imaging problems. After conducting experiments on two publicly available datasets and one private dataset, in both prostate gland and zonal segmentation tasks, GUSL achieves state-of-the-art performance among other DL-based models. Notably, GUSL features a very energy-efficient pipeline, since it has a model size several times smaller and less complexity than the rest of the solutions. In all datasets, GUSL achieved a Dice Similarity Coefficient (DSC) performance greater than $0.9$ for gland segmentation. Considering also its lightweight model size and transparency in feature extraction, it offers a competitive and practical package for medical imaging applications.

Prediction Crohn's Disease Activity Using Computed Tomography Enterography-Based Radiomics and Serum Markers.

Wang P, Liu Y, Wang Y

pubmed logopapersJun 30 2025
Accurate stratification of the activity index of Crohn's disease (CD) using computed tomography enterography (CTE) radiomics and serum markers can aid in predicting disease progression and assist physicians in personalizing therapeutic regimens for patients with CD. This retrospective study enrolled 233 patients diagnosed with CD between January 2019 and August 2024. Patients were divided into training and testing cohorts at a ratio of 7:3 and further categorized into remission, mild active phase, and moderate-severe active phase groups based on simple endoscopic score for CD (SEC-CD). Radiomics features were extracted from CTE venous images, and T-test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. The serum markers were selected based on the variance analysis. We also developed a random forest (RF) model for multi-class stratification of CD. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC) and quantified the contribution of each feature in the dataset to CD activity via Shapley additive exPlanations (SHAP) values. Finally, we enrolled gender, radiomics scores, and serum scores to develop a nomogram model to verify the effectiveness of feature extraction. 14 non-zero coefficient radiomics features and six serum markers with significant differences (P<0.01) were ultimately selected to predict CD activity. The AUC (micro/macro) for the ensemble machine learning model combining the radiomics features and serum markers is 0.931/0.928 for three-class. The AUC for the remission phase, the mild active phase, and the moderate-severe active phase were 0.983, 0.852, and 0.917, respectively. The mean AUC for the nomogram model was 0.940. A radiomics model was developed by integrating radiomics and serum markers of CD patients, achieving enhanced consistency with SEC-CD in grade CD. This model has the potential to assist clinicians in accurate diagnosis and treatment.

Development of a deep learning algorithm for detecting significant coronary artery stenosis in whole-heart coronary magnetic resonance angiography.

Takafuji M, Ishida M, Shiomi T, Nakayama R, Fujita M, Yamaguchi S, Washiyama Y, Nagata M, Ichikawa Y, Inoue Katsuhiro RT, Nakamura S, Sakuma H

pubmed logopapersJun 30 2025
Whole-heart coronary magnetic resonance angiography (CMRA) enables noninvasive and accurate detection of coronary artery stenosis. Nevertheless, the visual interpretation of CMRA is constrained by the observer's experience, necessitating substantial training. The purposes of this study were to develop a deep learning (DL) algorithm using a deep convolutional neural network to accurately detect significant coronary artery stenosis in CMRA and to investigate the effectiveness of this DL algorithm as a tool for assisting in accurate detection of coronary artery stenosis. Nine hundred and fifty-one coronary segments from 75 patients who underwent both CMRA and invasive coronary angiography (ICA) were studied. Significant stenosis was defined as a reduction in luminal diameter of >50% on quantitative ICA. A DL algorithm was proposed to classify CMRA segments into those with and without significant stenosis. A 4-fold cross-validation method was used to train and test the DL algorithm. An observer study was then conducted using 40 segments with stenosis and 40 segments without stenosis. Three radiology experts and 3 radiology trainees independently rated the likelihood of the presence of stenosis in each coronary segment with a continuous scale from 0 to 1, first without the support of the DL algorithm, then using the DL algorithm. Significant stenosis was observed in 84 (8.8%) of the 951 coronary segments. Using the DL algorithm trained by the 4-fold cross-validation method, the area under the receiver operating characteristic curve (AUC) for the detection of segments with significant coronary artery stenosis was 0.890, with 83.3% sensitivity, 83.6% specificity and 83.6% accuracy. In the observer study, the average AUC of trainees was significantly improved using the DL algorithm (0.898) compared to that without the algorithm (0.821, p<0.001). The average AUC of experts tended to be higher with the DL algorithm (0.897), but not significantly different from that without the algorithm (0.879, p=0.082). We developed a DL algorithm offering high diagnostic accuracy for detecting significant coronary artery stenosis on CMRA. Our proposed DL algorithm appears to be an effective tool for assisting inexperienced observers to accurately detect coronary artery stenosis in whole-heart CMRA.

Automated Finite Element Modeling of the Lumbar Spine: A Biomechanical and Clinical Approach to Spinal Load Distribution and Stress Analysis.

Ahmadi M, Zhang X, Lin M, Tang Y, Engeberg ED, Hashemi J, Vrionis FD

pubmed logopapersJun 30 2025
Biomechanical analysis of the lumbar spine is vital for understanding load distribution and stress patterns under physiological conditions. Traditional finite element analysis (FEA) relies on time-consuming manual segmentation and meshing, leading to long runtimes and inconsistent accuracy. Automating this process improves efficiency and reproducibility. This study introduces an automated FEA methodology for lumbar spine biomechanics, integrating deep learning-based segmentation with computational modeling to streamline workflows from imaging to simulation. Medical imaging data were segmented using deep learning frameworks for vertebrae and intervertebral discs. Segmented structures were transformed into optimized surface meshes via Laplacian smoothing and decimation. Using the Gibbon library and FEBio, FEA models incorporated cortical and cancellous bone, nucleus, annulus, cartilage, and ligaments. Ligament attachments used spherical coordinate-based segmentation; vertebral endplates were extracted via principal component analysis (PCA) for cartilage modeling. Simulations assessed stress, strain, and displacement under axial rotation, extension, flexion, and lateral bending. The automated pipeline cut model preparation time by 97.9%, from over 24 hours to 30 minutes and 49.48 seconds. Biomechanical responses aligned with experimental and traditional FEA data, showing high posterior element loads in extension and flexion, consistent ligament forces, and disc deformations. The approach enhanced reproducibility with minimal manual input. This automated methodology provides an efficient, accurate framework for lumbar spine biomechanics, eliminating manual segmentation challenges. It supports clinical diagnostics, implant design, and rehabilitation, advancing computational and patient-specific spinal studies. Rapid simulations enhance implant optimization, and early detection of degenerative spinal issues, improving personalized treatment and research.

U-Net-based architecture with attention mechanisms and Bayesian Optimization for brain tumor segmentation using MR images.

Ramalakshmi K, Krishna Kumari L

pubmed logopapersJun 30 2025
As technological innovation in computers has advanced, radiologists may now diagnose brain tumors (BT) with the use of artificial intelligence (AI). In the medical field, early disease identification enables further therapies, where the use of AI systems is essential for time and money savings. The difficulties presented by various forms of Magnetic Resonance (MR) imaging for BT detection are frequently not addressed by conventional techniques. To get around frequent problems with traditional tumor detection approaches, deep learning techniques have been expanded. Thus, for BT segmentation utilizing MR images, a U-Net-based architecture combined with Attention Mechanisms has been developed in this work. Moreover, by fine-tuning essential variables, Hyperparameter Optimization (HPO) is used using the Bayesian Optimization Algorithm to strengthen the segmentation model's performance. Tumor regions are pinpointed for segmentation using Region-Adaptive Thresholding technique, and the segmentation results are validated against ground truth annotated images to assess the performance of the suggested model. Experiments are conducted using the LGG, Healthcare, and BraTS 2021 MRI brain tumor datasets. Lastly, the importance of the suggested model has been demonstrated through comparing several metrics, such as IoU, accuracy, and DICE Score, with current state-of-the-art methods. The U-Net-based method gained a higher DICE score of 0.89687 in the segmentation of MRI-BT.
Page 53 of 2252247 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.