Multi-modal machine learning classifier for idiopathic pulmonary fibrosis predicts mortality in interstitial lung diseases.

Authors

Callahan SJ,Scholand MB,Kalra A,Muelly M,Reicher JJ

Affiliations (3)

  • University of North Carolina School of Medicine, 321 S. Columbia St, Chapel Hill, 27599, NC, USA. Electronic address: [email protected].
  • University of Utah Health, 50 N Medical Dr, Salt Lake City, 84132, UT, USA.
  • IMVARIA Inc., 1748 Shattuck Ave Pmb 137, Berkeley, 94709, CA, USA.

Abstract

Interstitial lung disease (ILD) prognostication incorporates clinical history, pulmonary function testing (PFTs), and chest CT pattern classifications. The machine learning classifier, Fibresolve, includes a model to help detect CT patterns associated with idiopathic pulmonary fibrosis (IPF). We developed and tested new Fibresolve software to predict outcomes in patients with ILD. Fibresolve uses a transformer (ViT) algorithm to analyze CT imaging that additionally embeds PFTs, age, and sex to produce an overall risk score. The model was trained to optimize risk score in a dataset of 602 subjects designed to maximize predictive performance via Cox proportional hazards. Validation was completed with the first hazard ratio assessment dataset, then tested in a second datatest set. 61 % of 220 subjects died in the validation set's study period, whereas 40 % of the 407 subjects died in the second dataset's. The validation dataset's mortality hazard ratio (HR) was 3.66 (95 % CI: 2.09-6.42) and 4.66 (CI: 2.47-8.77) for the moderate and high-risk groups. In the second dataset, Fibresolve was a predictor of mortality at initial visit, with a HR of 2.79 (1.73-4.49) and 5.82 (3.53-9.60) in the moderate and high-risk groups. Similar predictive performance was seen at follow-up visits, as well as with changes in the Fibresolve scores over sequential visits. Fibresolve predicts mortality by automatically assessing combined CT, PFTs, age, and sex into a ViT model. The new software algorithm affords accurate prognostication and demonstrates the ability to detect clinical changes over time.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.