Sort by:
Page 51 of 1341332 results

Brain White Matter Microstructure Associations with Blood Markers of the GSH Redox cycle in Schizophrenia

Pavan, T., Steullet, P., Aleman-Gomez, Y., Jenni, R., Schilliger, Z., Cleusix, M., Alameda, L., Do, K. Q., Conus, P., Hagmann, P., Dwir, D., Klauser, P., Jelescu, I.

medrxiv logopreprintJul 28 2025
In groups of patients suffering from schizophrenia (SZ), redox dysregulation was reported in both peripheral fluids and brain. It has been hypothesized that such dysregulation, including alterations of the glutathione (GSH) cycle could participate in the brain white matter (WM) abnormalities in SZ due to the oligodendrocytes susceptibility to oxidative stress. In this study we aim to assess the differences between 82 schizophrenia patients (PT) and 86 healthy controls (HC) in GSH-redox peripheral blood markers: GSH peroxidase (GPx), reductase (GR) enzymatic activities and their ratio (GPx/GR-ratio), evaluating the hypotheses that alterations in the homeostasis of the systemic GSH cycle may be associated with pathological mechanisms in the brain WM in PT. To do so, we employ the advanced diffusion MRI methods: Diffusion Kurtosis Imaging (DKI) and White Matter Tract Integrity-Watson (WMTI-W), which provide excellent sensitivity to demyelination and neuroinflammation. We show that GPx levels are higher (p=0.00041) in female control participants and decrease with aging (p=0.026). We find differences between PT and HC in the association of GR and mean kurtosis (MK, p<0.0001). Namely, lower MK was associated with higher blood GR activity in HC, but not in PT, suggesting that high GR activity (a hallmark of reductive stress) in HC was linked to changes in myelin integrity. However, GSH-redox peripheral blood markers did not explain the WM anomalies detected in PT, or the design of the present study could not detect subtle phenomenon, if present.

Segmentation of the human tongue musculature using MRI: Field guide and validation in motor neuron disease.

Shaw TB, Ribeiro FL, Zhu X, Aiken P, Bollmann S, Bollmann S, Chang J, Chidley K, Dempsey-Jones H, Eftekhari Z, Gillespie J, Henderson RD, Kiernan MC, Ktena I, McCombe PA, Ngo ST, Taubert ST, Whelan BM, Ye X, Steyn FJ, Tu S, Barth M

pubmed logopapersJul 28 2025
This work addresses the challenge of reliably measuring the muscles of the human tongue, which are difficult to quantify due to complex interwoven muscle types. We introduce a new semi-automated method, enabled by a manually curated dataset of MRI scans to accurately measure five key tongue muscles, combining AI-assisted, atlas-based, and manual segmentation approaches. The method was tested and validated in a dataset of 178 scans and included segmentation validation (n = 103) and clinical application (n = 132) in individuals with motor neuron disease. We show that people with speech and swallowing deficits tend to have smaller muscle volumes and present a normalisation strategy that removes confounding demographic factors, enabling broader application to large MRI datasets. As the tongue is generally covered in neuroimaging protocols, our multi-contrast pipeline will allow for the post-hoc analysis of a vast number of datasets. We expect this work to enable the investigation of tongue muscle morphology as a marker in a wide range of diseases that implicate tongue function, including neurodegenerative diseases and pathological speech disorders.

Towards trustworthy artificial intelligence in musculoskeletal medicine: A narrative review on uncertainty quantification.

Vahdani AM, Shariatnia M, Rajpurkar P, Pareek A

pubmed logopapersJul 28 2025
Deep learning (DL) models have achieved remarkable performance in musculoskeletal (MSK) medical imaging research, yet their clinical integration remains hindered by their black-box nature and the absence of reliable confidence measures. Uncertainty quantification (UQ) seeks to bridge this gap by providing each DL prediction with a calibrated estimate of uncertainty, thereby fostering clinician trust and safer deployment. We conducted a targeted narrative review, performing expert-driven searches in PubMed, Scopus, and arXiv and mining references from relevant publications in MSK imaging utilizing UQ, and a thematic synthesis was used to derive a cohesive taxonomy of UQ methodologies. UQ approaches encompass multi-pass methods (e.g., test-time augmentation, Monte Carlo dropout, and model ensembling) that infer uncertainty from variability across repeated inferences; single-pass methods (e.g., conformal prediction, and evidential deep learning) that augment each individual prediction with uncertainty metrics; and other techniques that leverage auxiliary information, such as inter-rater variability, hidden-layer activations, or generative reconstruction errors, to estimate confidence. Applications in MSK imaging, include highlighting uncertain areas in cartilage segmentation and identifying uncertain predictions in joint implant design detections; downstream applications include enhanced clinical utility and more efficient data annotation pipelines. Embedding UQ into DL workflows is essential for translating high-performance models into clinical practice. Future research should prioritize robust out-of-distribution handling, computational efficiency, and standardized evaluation metrics to accelerate the adoption of trustworthy AI in MSK medicine. Not applicable.

A new low-rank adaptation method for brain structure and metastasis segmentation via decoupled principal weight direction and magnitude.

Zhu H, Yang H, Wang Y, Hu K, He G, Zhou J, Li Z

pubmed logopapersJul 28 2025
Deep learning techniques have become pivotal in medical image segmentation, but their success often relies on large, manually annotated datasets, which are expensive and labor-intensive to obtain. Additionally, different segmentation tasks frequently require retraining models from scratch, resulting in substantial computational costs. To address these limitations, we propose PDoRA, an innovative parameter-efficient fine-tuning method that leverages knowledge transfer from a pre-trained SwinUNETR model for a wide range of brain image segmentation tasks. PDoRA minimizes the reliance on extensive data annotation and computational resources by decomposing model weights into principal and residual weights. The principal weights are further divided into magnitude and direction, enabling independent fine-tuning to enhance the model's ability to capture task-specific features. The residual weights remain fixed and are later fused with the updated principal weights, ensuring model stability while enhancing performance. We evaluated PDoRA on three diverse medical image datasets for brain structure and metastasis segmentation. The results demonstrate that PDoRA consistently outperforms existing parameter-efficient fine-tuning methods, achieving superior segmentation accuracy and efficiency. Our code is available at https://github.com/Perfect199001/PDoRA/tree/main .

From promise to practice: a scoping review of AI applications in abdominal radiology.

Fotis A, Lalwani N, Gupta P, Yee J

pubmed logopapersJul 28 2025
AI is rapidly transforming abdominal radiology. This scoping review mapped current applications across segmentation, detection, classification, prediction, and workflow optimization based on 432 studies published between 2019 and 2024. Most studies focused on CT imaging, with fewer involving MRI, ultrasound, or X-ray. Segmentation models (e.g., U-Net) performed well in liver and pancreatic imaging (Dice coefficient 0.65-0.90). Classification models (e.g., ResNet, DenseNet) were commonly used for diagnostic labeling, with reported sensitivities ranging from 52 to 100% and specificities from 40.7 to 99%. A small number of studies employed true object detection models (e.g., YOLOv3, YOLOv7, Mask R-CNN) capable of spatial lesion localization, marking an emerging trend toward localization-based AI. Predictive models demonstrated AUCs between 0.62 and 0.99 but often lacked interpretability and external validation. Workflow optimization studies reported improved efficiency (e.g., reduced report turnaround and scan repetition), though standardized benchmarks were often missing. Major gaps identified include limited real-world validation, underuse of non-CT modalities, and unclear regulatory pathways. Successful clinical integration will require robust validation, practical implementation, and interdisciplinary collaboration.

Topology Optimization in Medical Image Segmentation with Fast χ Euler Characteristic.

Li L, Ma Q, Oyang C, Paetzold JC, Rueckert D, Kainz B

pubmed logopapersJul 28 2025
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic (χ). First, we propose a fast formulation for χ computation in both 2D and 3D. The scalar χ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with χ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.

Quantification of hepatic steatosis on post-contrast computed tomography scans using artificial intelligence tools.

Derstine BA, Holcombe SA, Chen VL, Pai MP, Sullivan JA, Wang SC, Su GL

pubmed logopapersJul 26 2025
Early detection of steatotic liver disease (SLD) is critically important. In clinical practice, hepatic steatosis is frequently diagnosed using computed tomography (CT) performed for unrelated clinical indications. An equation for estimating magnetic resonance proton density fat fraction (MR-PDFF) using liver attenuation on non-contrast CT exists, but no equivalent equation exists for post-contrast CT. We sought to (1) determine whether an automated workflow can accurately measure liver attenuation, (2) validate previously identified optimal thresholds for liver or liver-spleen attenuation in post-contrast studies, and (3) develop a method for estimating MR-PDFF (FF) on post-contrast CT. The fully automated TotalSegmentator 'total' machine learning model was used to segment 3D liver and spleen from non-contrast and post-contrast CT scans. Mean attenuation was extracted from liver (L) and spleen (S) volumes and from manually placed regions of interest (ROIs) in multi-phase CT scans of two cohorts: derivation (n = 1740) and external validation (n = 1044). Non-linear regression was used to determine the optimal coefficients for three phase-specific (arterial, venous, delayed) increasing exponential decay equations relating post-contrast L to non-contrast L. MR-PDFF was estimated from non-contrast CT and used as the reference standard. The mean attenuation for manual ROIs versus automated volumes were nearly perfectly correlated for both liver and spleen (r > .96, p < .001). For moderate-to-severe steatosis (L < 40 HU), the density of the liver (L) alone was a better classifier than either liver-spleen difference (L-S) or ratio (L/S) on post-contrast CTs. Fat fraction calculated using a corrected post-contrast liver attenuation measure agreed with non-contrast FF > 15% in both the derivation and external validation cohort, with AUROC between 0.92 and 0.97 on arterial, venous, and delayed phases. Automated volumetric mean attenuation of liver and spleen can be used instead of manually placed ROIs for liver fat assessments. Liver attenuation alone in post-contrast phases can be used to assess the presence of moderate-to-severe hepatic steatosis. Correction equations for liver attenuation on post-contrast phase CT scans enable reasonable quantification of liver steatosis, providing potential opportunities for utilizing clinical scans to develop large scale screening or studies in SLD.

CLT-MambaSeg: An integrated model of Convolution, Linear Transformer and Multiscale Mamba for medical image segmentation.

Uppal D, Prakash S

pubmed logopapersJul 26 2025
Recent advances in deep learning have significantly enhanced the performance of medical image segmentation. However, maintaining a balanced integration of feature localization, global context modeling, and computational efficiency remains a critical research challenge. Convolutional Neural Networks (CNNs) effectively capture fine-grained local features through hierarchical convolutions; however, they often struggle to model long-range dependencies due to their limited receptive field. Transformers address this limitation by leveraging self-attention mechanisms to capture global context, but they are computationally intensive and require large-scale data for effective training. The Mamba architecture has emerged as a promising approach, effectively capturing long-range dependencies while maintaining low computational overhead and high segmentation accuracy. Based on this, we propose a method named CLT-MambaSeg that integrates Convolution, Linear Transformer, and Multiscale Mamba architectures to capture local features, model global context, and improve computational efficiency for medical image segmentation. It utilizes a convolution-based Spatial Representation Extraction (SREx) module to capture intricate spatial relationships and dependencies. Further, it comprises a Mamba Vision Linear Transformer (MVLTrans) module to capture multiscale context, spatial and sequential dependencies, and enhanced global context. In addition, to address the problem of limited data, we propose a novel Memory-Guided Augmentation Generative Adversarial Network (MeGA-GAN) that generates synthetic realistic images to further enhance the segmentation performance. We conduct extensive experiments and ablation studies on the five benchmark datasets, namely CVC-ClinicDB, Breast UltraSound Images (BUSI), PH2, and two datasets from the International Skin Imaging Collaboration (ISIC), namely ISIC-2016 and ISIC-2017. Experimental results demonstrate the efficacy of the proposed CLT-MambaSeg compared to other state-of-the-art methods.

Optimization of deep learning models for inference in low resource environments.

Thakur S, Pati S, Wu J, Panchumarthy R, Karkada D, Kozlov A, Shamporov V, Suslov A, Lyakhov D, Proshin M, Shah P, Makris D, Bakas S

pubmed logopapersJul 26 2025
Artificial Intelligence (AI), and particularly deep learning (DL), has shown great promise to revolutionize healthcare. However, clinical translation is often hindered by demanding hardware requirements. In this study, we assess the effectiveness of optimization techniques for DL models in healthcare applications, targeting varying AI workloads across the domains of radiology, histopathology, and medical RGB imaging, while evaluating across hardware configurations. The assessed AI workloads focus on both segmentation and classification workloads, by virtue of brain extraction in Magnetic Resonance Imaging (MRI), colorectal cancer delineation in Hematoxylin & Eosin (H&E) stained digitized tissue sections, and diabetic foot ulcer classification in RGB images. We quantitatively evaluate model performance in terms of model runtime during inference (including speedup, latency, and memory usage) and model utility on unseen data. Our results demonstrate that optimization techniques can substantially improve model runtime, without compromising model utility. These findings suggest that optimization techniques can facilitate the clinical translation of AI models in low-resource environments, making them more practical for real-world healthcare applications even in underserved regions.

A novel hybrid deep learning approach combining deep feature attention and statistical validation for enhanced thyroid ultrasound segmentation.

Banerjee T, Singh DP, Swain D, Mahajan S, Kadry S, Kim J

pubmed logopapersJul 26 2025
An effective diagnosis system and suitable treatment planning require the precise segmentation of thyroid nodules in ultrasound imaging. The advancement of imaging technologies has not resolved traditional imaging challenges, which include noise issues, limited contrast, and dependency on operator choices, thus highlighting the need for automated, reliable solutions. The researchers developed TATHA, an innovative deep learning architecture dedicated to improving thyroid ultrasound image segmentation accuracy. The model is evaluated using the digital database of thyroid ultrasound images, which includes 99 cases across three subsets containing 134 labelled images for training, validation, and testing. It incorporates data pre-treatment procedures that reduce speckle noise and enhance contrast, while edge detection provides high-quality input for segmentation. TATHA outperforms U-Net, PSPNet, and Vision Transformers across various datasets and cross-validation folds, achieving superior Dice scores, accuracy, and AUC results. The distributed thyroid segmentation framework generates reliable predictions by combining results from multiple feature extraction units. The findings confirm that these advancements make TATHA an essential tool for clinicians and researchers in thyroid imaging and clinical applications.
Page 51 of 1341332 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.