Sort by:
Page 5 of 32311 results

A review of image processing and analysis of computed tomography images using deep learning methods.

Anderson D, Ramachandran P, Trapp J, Fielding A

pubmed logopapersSep 3 2025
The use of machine learning has seen extraordinary growth since the development of deep learning techniques, notably the deep artificial neural network. Deep learning methodology excels in addressing complicated problems such as image classification, object detection, and natural language processing. A key feature of these networks is the capability to extract useful patterns from vast quantities of complex data, including images. As many branches of healthcare revolves around the generation, processing, and analysis of images, these techniques have become increasingly commonplace. This is especially true for radiotherapy, which relies on the use of anatomical and functional images from a range of imaging modalities, such as Computed Tomography (CT). The aim of this review is to provide an understanding of deep learning methodologies, including neural network types and structure, as well as linking these general concepts to medical CT image processing for radiotherapy. Specifically, it focusses on the stages of enhancement and analysis, incorporating image denoising, super-resolution, generation, registration, and segmentation, supported by examples of recent literature.

Optimizing Paths for Adaptive Fly-Scan Microscopy: An Extended Version

Yu Lu, Thomas F. Lynn, Ming Du, Zichao Di, Sven Leyffer

arxiv logopreprintSep 2 2025
In x-ray microscopy, traditional raster-scanning techniques are used to acquire a microscopic image in a series of step-scans. Alternatively, scanning the x-ray probe along a continuous path, called a fly-scan, reduces scan time and increases scan efficiency. However, not all regions of an image are equally important. Currently used fly-scan methods do not adapt to the characteristics of the sample during the scan, often wasting time in uniform, uninteresting regions. One approach to avoid unnecessary scanning in uniform regions for raster step-scans is to use deep learning techniques to select a shorter optimal scan path instead of a traditional raster scan path, followed by reconstructing the entire image from the partially scanned data. However, this approach heavily depends on the quality of the initial sampling, requires a large dataset for training, and incurs high computational costs. We propose leveraging the fly-scan method along an optimal scanning path, focusing on regions of interest (ROIs) and using image completion techniques to reconstruct details in non-scanned areas. This approach further shortens the scanning process and potentially decreases x-ray exposure dose while maintaining high-quality and detailed information in critical regions. To achieve this, we introduce a multi-iteration fly-scan framework that adapts to the scanned image. Specifically, in each iteration, we define two key functions: (1) a score function to generate initial anchor points and identify potential ROIs, and (2) an objective function to optimize the anchor points for convergence to an optimal set. Using these anchor points, we compute the shortest scanning path between optimized anchor points, perform the fly-scan, and subsequently apply image completion based on the acquired information in preparation for the next scan iteration.

Utilisation of artificial intelligence to enhance the detection rates of renal cancer on cross-sectional imaging: protocol for a systematic review and meta-analysis.

Ofagbor O, Bhardwaj G, Zhao Y, Baana M, Arkwazi M, Lami M, Bolton E, Heer R

pubmed logopapersAug 31 2025
The incidence of renal cell carcinoma has steadily been on the increase due to the increased use of imaging to identify incidental masses. Although survival has also improved because of early detection, overdiagnosis and overtreatment of benign renal masses are associated with significant morbidity, as patients with a suspected renal malignancy on imaging undergo invasive and risky procedures for a definitive diagnosis. Therefore, accurately characterising a renal mass as benign or malignant on imaging is paramount to improving patient outcomes. Artificial intelligence (AI) poses an exciting solution to the problem, augmenting traditional radiological diagnosis to increase detection accuracy. This report aims to investigate and summarise the current evidence about the diagnostic accuracy of AI in characterising renal masses on imaging. This will involve systematically searching PubMed, MEDLINE, Embase, Web of Science, Scopus and Cochrane databases. Publications of research that have evaluated the use of automated AI, fully or to some extent, in cross-sectional imaging for diagnosing or characterising malignant renal tumours will be included if published between July 2016 and June 2025 and in English. The protocol adheres to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 checklist. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) score will be used to evaluate the quality and risk of bias across included studies. Furthermore, in line with Checklist for Artificial Intelligence in Medical Imaging recommendations, studies will be evaluated for including the minimum necessary information on AI research reporting. Ethical clearance will not be necessary for conducting this systematic review, and results will be disseminated through peer-reviewed publications and presentations at both national and international conferences. CRD42024529929.

Artificial Intelligence-Guided PET Image Reconstruction and Multi-Tracer Imaging: Novel Methods, Challenges, And Opportunities

Movindu Dassanayake, Alejandro Lopez, Andrew Reader, Gary J. R. Cook, Clemens Mingels, Arman Rahmim, Robert Seifert, Ian Alberts, Fereshteh Yousefirizi

arxiv logopreprintAug 30 2025
LAFOV PET/CT has the potential to unlock new applications such as ultra-low dose PET/CT imaging, multiplexed imaging, for biomarker development and for faster AI-driven reconstruction, but further work is required before these can be deployed in clinical routine. LAFOV PET/CT has unrivalled sensitivity but has a spatial resolution of an equivalent scanner with a shorter axial field of view. AI approaches are increasingly explored as potential avenues to enhance image resolution.

The African Breast Imaging Dataset for Equitable Cancer Care: Protocol for an Open Mammogram and Ultrasound Breast Cancer Detection Dataset

Musinguzi, D., Katumba, A., Kawooya, M. G., Malumba, R., Nakatumba-Nabende, J., Achuka, S. A., Adewole, M., Anazodo, U.

medrxiv logopreprintAug 28 2025
IntroductionBreast cancer is one of the most common cancers globally. Its incidence in Africa has increased sharply, surpassing that in high-income countries. Mortality remains high due to late-stage diagnosis, when treatment is less effetive. We propose the first open, longitudinal breast imaging dataset from Africa comprising point-of-care ultrasound scans, mammograms, biopsy pathology, and clinical profiles to support early detection using machine learning. Methods and AnalysisWe will engage women through community outreach and train them in self-examination. Those with suspected lesions, particularly with a family history of breast cancer, will be invited to participate. A total of 100 women will undergo baseline assessment at medical centers, including clinical exams, blood tests, and mammograms. Follow-up point-of-care ultrasound scans and clinical data will be collected at 3 and 6 months, with final assessments at 9 months including mammograms. Ethics and DisseminationThe study has been approved by the Institutional Review Boards at ECUREI and the MAI Lab. Findings will be disseminated through peer-reviewed journals and scientific conferences.

A Systematic Review on the Generative AI Applications in Human Medical Genomics

Anton Changalidis, Yury Barbitoff, Yulia Nasykhova, Andrey Glotov

arxiv logopreprintAug 27 2025
Although traditional statistical techniques and machine learning methods have contributed significantly to genetics and, in particular, inherited disease diagnosis, they often struggle with complex, high-dimensional data, a challenge now addressed by state-of-the-art deep learning models. Large language models (LLMs), based on transformer architectures, have excelled in tasks requiring contextual comprehension of unstructured medical data. This systematic review examines the role of LLMs in the genetic research and diagnostics of both rare and common diseases. Automated keyword-based search in PubMed, bioRxiv, medRxiv, and arXiv was conducted, targeting studies on LLM applications in diagnostics and education within genetics and removing irrelevant or outdated models. A total of 172 studies were analyzed, highlighting applications in genomic variant identification, annotation, and interpretation, as well as medical imaging advancements through vision transformers. Key findings indicate that while transformer-based models significantly advance disease and risk stratification, variant interpretation, medical imaging analysis, and report generation, major challenges persist in integrating multimodal data (genomic sequences, imaging, and clinical records) into unified and clinically robust pipelines, facing limitations in generalizability and practical implementation in clinical settings. This review provides a comprehensive classification and assessment of the current capabilities and limitations of LLMs in transforming hereditary disease diagnostics and supporting genetic education, serving as a guide to navigate this rapidly evolving field.

Is the medical image segmentation problem solved? A survey of current developments and future directions

Guoping Xu, Jayaram K. Udupa, Jax Luo, Songlin Zhao, Yajun Yu, Scott B. Raymond, Hao Peng, Lipeng Ning, Yogesh Rathi, Wei Liu, You Zhang

arxiv logopreprintAug 27 2025
Medical image segmentation has advanced rapidly over the past two decades, largely driven by deep learning, which has enabled accurate and efficient delineation of cells, tissues, organs, and pathologies across diverse imaging modalities. This progress raises a fundamental question: to what extent have current models overcome persistent challenges, and what gaps remain? In this work, we provide an in-depth review of medical image segmentation, tracing its progress and key developments over the past decade. We examine core principles, including multiscale analysis, attention mechanisms, and the integration of prior knowledge, across the encoder, bottleneck, skip connections, and decoder components of segmentation networks. Our discussion is organized around seven key dimensions: (1) the shift from supervised to semi-/unsupervised learning, (2) the transition from organ segmentation to lesion-focused tasks, (3) advances in multi-modality integration and domain adaptation, (4) the role of foundation models and transfer learning, (5) the move from deterministic to probabilistic segmentation, (6) the progression from 2D to 3D and 4D segmentation, and (7) the trend from model invocation to segmentation agents. Together, these perspectives provide a holistic overview of the trajectory of deep learning-based medical image segmentation and aim to inspire future innovation. To support ongoing research, we maintain a continually updated repository of relevant literature and open-source resources at https://github.com/apple1986/medicalSegReview

Application of artificial intelligence in medical imaging for tumor diagnosis and treatment: a comprehensive approach.

Huang J, Xiang Y, Gan S, Wu L, Yan J, Ye D, Zhang J

pubmed logopapersAug 26 2025
This narrative review provides a comprehensive and structured overview of recent advances in the application of artificial intelligence (AI) to medical imaging for tumor diagnosis and treatment. By synthesizing evidence from recent literature and clinical reports, we highlight the capabilities, limitations, and translational potential of AI techniques across key imaging modalities such as CT, MRI, and PET. Deep learning (DL) and radiomics have facilitated automated lesion detection, tumour segmentation, and prognostic assessments, improving early cancer detection across various malignancies, including breast, lung, and prostate cancers. AI-driven multi-modal imaging fusion integrates radiomics, genomics, and clinical data, refining precision oncology strategies. Additionally, AI-assisted radiotherapy planning and adaptive dose optimisation have enhanced therapeutic efficacy while minimising toxicity. However, challenges persist regarding data heterogeneity, model generalisability, regulatory constraints, and ethical concerns. The lack of standardised datasets and explainable AI (XAI) frameworks hinders clinical adoption. Future research should focus on improving AI interpretability, fostering multi-centre dataset interoperability, and integrating AI with molecular imaging and real-time clinical decision support. Addressing these challenges will ensure AI's seamless integration into clinical oncology, optimising cancer diagnosis, prognosis, and treatment outcomes.

Toward Non-Invasive Voice Restoration: A Deep Learning Approach Using Real-Time MRI

Saleh, M. W.

medrxiv logopreprintAug 26 2025
Despite recent advances in brain-computer interfaces (BCIs) for speech restoration, existing systems remain invasive, costly, and inaccessible to individuals with congenital mutism or neurodegenerative disease. We present a proof-of-concept pipeline that synthesizes personalized speech directly from real-time magnetic resonance imaging (rtMRI) of the vocal tract, without requiring acoustic input. Segmented rtMRI frames are mapped to articulatory class representations using a Pix2Pix conditional GAN, which are then transformed into synthetic audio waveforms by a convolutional neural network modeling the articulatory-to-acoustic relationship. The outputs are rendered into audible form and evaluated with speaker-similarity metrics derived from Resemblyzer embeddings. While preliminary, our results suggest that even silent articulatory motion encodes sufficient information to approximate a speakers vocal characteristics, offering a non-invasive direction for future speech restoration in individuals who have lost or never developed voice.
Page 5 of 32311 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.