Sort by:
Page 5 of 1091 results

Artificial intelligence in coronary CT angiography: transforming the diagnosis and risk stratification of atherosclerosis.

Irannejad K, Mafi M, Krishnan S, Budoff MJ

pubmed logopapersJun 27 2025
Coronary CT Angiography (CCTA) is essential for assessing atherosclerosis and coronary artery disease, aiding in early detection, risk prediction, and clinical assessment. However, traditional CCTA interpretation is limited by observer variability, time inefficiency, and inconsistent plaque characterization. AI has emerged as a transformative tool, enhancing diagnostic accuracy, workflow efficiency, and risk prediction for major adverse cardiovascular events (MACE). Studies show that AI improves stenosis detection by 27%, inter-reader agreement by 30%, and reduces reporting times by 40%, thereby addressing key limitations of manual interpretation. Integrating AI with multimodal imaging (e.g., FFR-CT, PET-CT) further enhances ischemia detection by 28% and lesion classification by 35%, providing a more comprehensive cardiovascular evaluation. This review synthesizes recent advancements in CCTA-AI automation, risk stratification, and precision diagnostics while critically analyzing data quality, generalizability, ethics, and regulation challenges. Future directions, including real-time AI-assisted triage, cloud-based diagnostics, and AI-driven personalized medicine, are explored for their potential to revolutionize clinical workflows and optimize patient outcomes.

Leadership in radiology in the era of technological advancements and artificial intelligence.

Wichtmann BD, Paech D, Pianykh OS, Huang SY, Seltzer SE, Brink J, Fennessy FM

pubmed logopapersJun 27 2025
Radiology has evolved from the pioneering days of X-ray imaging to a field rich in advanced technologies on the cusp of a transformative future driven by artificial intelligence (AI). As imaging workloads grow in volume and complexity, and economic as well as environmental pressures intensify, visionary leadership is needed to navigate the unprecedented challenges and opportunities ahead. Leveraging its strengths in automation, accuracy and objectivity, AI will profoundly impact all aspects of radiology practice-from workflow management, to imaging, diagnostics, reporting and data-driven analytics-freeing radiologists to focus on value-driven tasks that improve patient care. However, successful AI integration requires strong leadership and robust governance structures to oversee algorithm evaluation, deployment, and ongoing maintenance, steering the transition from static to continuous learning systems. The vision of a "diagnostic cockpit" that integrates multidimensional data for quantitative precision diagnoses depends on visionary leadership that fosters innovation and interdisciplinary collaboration. Through administrative automation, precision medicine, and predictive analytics, AI can enhance operational efficiency, reduce administrative burden, and optimize resource allocation, leading to substantial cost reductions. Leaders need to understand not only the technical aspects but also the complex human, administrative, and organizational challenges of AI's implementation. Establishing sound governance and organizational frameworks will be essential to ensure ethical compliance and appropriate oversight of AI algorithms. As radiology advances toward this AI-driven future, leaders must cultivate an environment where technology enhances rather than replaces human skills, upholding an unwavering commitment to human-centered care. Their vision will define radiology's pioneering role in AI-enabled healthcare transformation. KEY POINTS: Question Artificial intelligence (AI) will transform radiology, improving workflow efficiency, reducing administrative burden, and optimizing resource allocation to meet imaging workloads' increasing complexity and volume. Findings Strong leadership and governance ensure ethical deployment of AI, steering the transition from static to continuous learning systems while fostering interdisciplinary innovation and collaboration. Clinical relevance Visionary leaders must harness AI to enhance, rather than replace, the role of professionals in radiology, advancing human-centered care while pioneering healthcare transformation.

[The analysis of invention patents in the field of artificial intelligent medical devices].

Zhang T, Chen J, Lu Y, Xu D, Yan S, Ouyang Z

pubmed logopapersJun 25 2025
The emergence of new-generation artificial intelligence technology has brought numerous innovations to the healthcare field, including telemedicine and intelligent care. However, the artificial intelligent medical device sector still faces significant challenges, such as data privacy protection and algorithm reliability. This study, based on invention patent analysis, revealed the technological innovation trends in the field of artificial intelligent medical devices from aspects such as patent application time trends, hot topics, regional distribution, and innovation players. The results showed that global invention patent applications had remained active, with technological innovations primarily focused on medical image processing, physiological signal processing, surgical robots, brain-computer interfaces, and intelligent physiological parameter monitoring technologies. The United States and China led the world in the number of invention patent applications. Major international medical device giants, such as Philips, Siemens, General Electric, and Medtronic, were at the forefront of global technological innovation, with significant advantages in patent application volumes and international market presence. Chinese universities and research institutes, such as Zhejiang University, Tianjin University, and the Shenzhen Institute of Advanced Technology, had demonstrated notable technological innovation, with a relatively high number of patent applications. However, their overseas market expansion remained limited. This study provides a comprehensive overview of the technological innovation trends in the artificial intelligent medical device field and offers valuable information support for industry development from an informatics perspective.

[Analysis of the global competitive landscape in artificial intelligence medical device research].

Chen J, Pan L, Long J, Yang N, Liu F, Lu Y, Ouyang Z

pubmed logopapersJun 25 2025
The objective of this study is to map the global scientific competitive landscape in the field of artificial intelligence (AI) medical devices using scientific data. A bibliometric analysis was conducted using the Web of Science Core Collection to examine global research trends in AI-based medical devices. As of the end of 2023, a total of 55 147 relevant publications were identified worldwide, with 76.6% published between 2018 and 2024. Research in this field has primarily focused on AI-assisted medical image and physiological signal analysis. At the national level, China (17 991 publications) and the United States (14 032 publications) lead in output. China has shown a rapid increase in publication volume, with its 2023 output exceeding twice that of the U.S.; however, the U.S. maintains a higher average citation per paper (China: 16.29; U.S.: 35.99). At the institutional level, seven Chinese institutions and three U.S. institutions rank among the global top ten in terms of publication volume. At the researcher level, prominent contributors include Acharya U Rajendra, Rueckert Daniel and Tian Jie, who have extensively explored AI-assisted medical imaging. Some researchers have specialized in specific imaging applications, such as Yang Xiaofeng (AI-assisted precision radiotherapy for tumors) and Shen Dinggang (brain imaging analysis). Others, including Gao Xiaorong and Ming Dong, focus on AI-assisted physiological signal analysis. The results confirm the rapid global development of AI in the medical device field, with "AI + imaging" emerging as the most mature direction. China and the U.S. maintain absolute leadership in this area-China slightly leads in publication volume, while the U.S., having started earlier, demonstrates higher research quality. Both countries host a large number of active research teams in this domain.

Interventional Radiology Reporting Standards and Checklist for Artificial Intelligence Research Evaluation (iCARE).

Anibal JT, Huth HB, Boeken T, Daye D, Gichoya J, Muñoz FG, Chapiro J, Wood BJ, Sze DY, Hausegger K

pubmed logopapersJun 25 2025
As artificial intelligence (AI) becomes increasingly prevalent within interventional radiology (IR) research and clinical practice, steps must be taken to ensure the robustness of novel technological systems presented in peer-reviewed journals. This report introduces comprehensive standards and an evaluation checklist (iCARE) that covers the application of modern AI methods in IR-specific contexts. The iCARE checklist encompasses the full "code-to-clinic" pipeline of AI development, including dataset curation, pre-training, task-specific training, explainability, privacy protection, bias mitigation, reproducibility, and model deployment. The iCARE checklist aims to support the development of safe, generalizable technologies for enhancing IR workflows, the delivery of care, and patient outcomes.

[AI-enabled clinical decision support systems: challenges and opportunities].

Tschochohei M, Adams LC, Bressem KK, Lammert J

pubmed logopapersJun 25 2025
Clinical decision-making is inherently complex, time-sensitive, and prone to error. AI-enabled clinical decision support systems (CDSS) offer promising solutions by leveraging large datasets to provide evidence-based recommendations. These systems range from rule-based and knowledge-based to increasingly AI-driven approaches. However, key challenges persist, particularly concerning data quality, seamless integration into clinical workflows, and clinician trust and acceptance. Ethical and legal considerations, especially data privacy, are also paramount.AI-CDSS have demonstrated success in fields like radiology (e.g., pulmonary nodule detection, mammography interpretation) and cardiology, where they enhance diagnostic accuracy and improve patient outcomes. Looking ahead, chat and voice interfaces powered by large language models (LLMs) could support shared decision-making (SDM) by fostering better patient engagement and understanding.To fully realize the potential of AI-CDSS in advancing efficient, patient-centered care, it is essential to ensure their responsible development. This includes grounding AI models in domain-specific data, anonymizing user inputs, and implementing rigorous validation of AI-generated outputs before presentation. Thoughtful design and ethical oversight will be critical to integrating AI safely and effectively into clinical practice.

[Practical artificial intelligence for urology : Technical principles, current application and future implementation of AI in practice].

Rodler S, Hügelmann K, von Knobloch HC, Weiss ML, Buck L, Kohler J, Fabian A, Jarczyk J, Nuhn P

pubmed logopapersJun 24 2025
Artificial intelligence (AI) is a disruptive technology that is currently finding widespread application after having long been confined to the domain of specialists. In urology, in particular, new fields of application are continuously emerging, which are being studied both in preclinical basic research and in clinical applications. Potential applications include image recognition in the operating room or interpreting images from radiology and pathology, the automatic measurement of urinary stones and radiotherapy. Certain medical devices, particularly in the field of AI-based predictive biomarkers, have already been incorporated into international guidelines. In addition, AI is playing an increasingly more important role in administrative tasks and is expected to lead to enormous changes, especially in the outpatient sector. For urologists, it is becoming increasingly more important to engage with this technology, to pursue appropriate training and therefore to optimally implement AI into the treatment of patients and in the management of their practices or hospitals.

Quality appraisal of radiomics-based studies on chondrosarcoma using METhodological RadiomICs Score (METRICS) and Radiomics Quality Score (RQS).

Gitto S, Cuocolo R, Klontzas ME, Albano D, Messina C, Sconfienza LM

pubmed logopapersJun 18 2025
To assess the methodological quality of radiomics-based studies on bone chondrosarcoma using METhodological RadiomICs Score (METRICS) and Radiomics Quality Score (RQS). A literature search was conducted on EMBASE and PubMed databases for research papers published up to July 2024 and focused on radiomics in bone chondrosarcoma, with no restrictions regarding the study aim. Three readers independently evaluated the study quality using METRICS and RQS. Baseline study characteristics were extracted. Inter-reader reliability was calculated using intraclass correlation coefficient (ICC). Out of 68 identified papers, 18 were finally included in the analysis. Radiomics research was aimed at lesion classification (n = 15), outcome prediction (n = 2) or both (n = 1). Study design was retrospective in all papers. Most studies employed MRI (n = 12), CT (n = 3) or both (n = 1). METRICS and RQS adherence rates ranged between 37.3-94.8% and 2.8-44.4%, respectively. Excellent inter-reader reliability was found for both METRICS (ICC = 0.961) and RQS (ICC = 0.975). Among the limitations of the evaluated studies, the absence of prospective studies and deep learning-based analyses was highlighted, along with the limited adherence to radiomics guidelines, use of external testing datasets and open science data. METRICS and RQS are reproducible quality assessment tools, with the former showing higher adherence rates in studies on chondrosarcoma. METRICS is better suited for assessing papers with retrospective design, which is often chosen in musculoskeletal oncology due to the low prevalence of bone sarcomas. Employing quality scoring systems should be promoted in radiomics-based studies to improve methodological quality and facilitate clinical translation. Employing reproducible quality scoring systems, especially METRICS (which shows higher adherence rates than RQS and is better suited for assessing retrospective investigations), is highly recommended to design radiomics-based studies on chondrosarcoma, improve methodological quality and facilitate clinical translation. The low scientific and reporting quality of radiomics studies on chondrosarcoma is the main reason preventing clinical translation. Quality appraisal using METRICS and RQS showed 37.3-94.8% and 2.8-44.4% adherence rates, respectively. Room for improvement was noted in study design, deep learning methods, external testing and open science. Employing reproducible quality scoring systems is recommended to design radiomics studies on bone chondrosarcoma and facilitate clinical translation.

Radiologist-AI workflow can be modified to reduce the risk of medical malpractice claims

Bernstein, M., Sheppard, B., Bruno, M. A., Lay, P. S., Baird, G. L.

medrxiv logopreprintJun 16 2025
BackgroundArtificial Intelligence (AI) is rapidly changing the legal landscape of radiology. Results from a previous experiment suggested that providing AI error rates can reduce perceived radiologist culpability, as judged by mock jury members (4). The current study advances this work by examining whether the radiologists behavior also impacts perceptions of liability. Methods. Participants (n=282) read about a hypothetical malpractice case where a 50-year-old who visited the Emergency Department with acute neurological symptoms received a brain CT scan to determine if bleeding was present. An AI system was used by the radiologist who interpreted imaging. The AI system correctly flagged the case as abnormal. Nonetheless, the radiologist concluded no evidence of bleeding, and the blood-thinner t-PA was administered. Participants were randomly assigned to either a 1.) single-read condition, where the radiologist interpreted the CT once after seeing AI feedback, or 2.) a double-read condition, where the radiologist interpreted the CT twice, first without AI and then with AI feedback. Participants were then told the patient suffered irreversible brain damage due to the missed brain bleed, resulting in the patient (plaintiff) suing the radiologist (defendant). Participants indicated whether the radiologist met their duty of care to the patient (yes/no). Results. Hypothetical jurors were more likely to side with the plaintiff in the single-read condition (106/142, 74.7%) than in the double-read condition (74/140, 52.9%), p=0.0002. Conclusion. This suggests that the penalty for disagreeing with correct AI can be mitigated when images are interpreted twice, or at least if a radiologist gives an interpretation before AI is used.
Page 5 of 1091 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.