Sort by:
Page 5 of 45448 results

Rethinking boundary detection in deep learning-based medical image segmentation.

Lin Y, Zhang D, Fang X, Chen Y, Cheng KT, Chen H

pubmed logopapersJul 1 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, BraTS, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: CTO.

Automatic adult age estimation using bone mineral density of proximal femur via deep learning.

Cao Y, Ma Y, Zhang S, Li C, Chen F, Zhang J, Huang P

pubmed logopapersJul 1 2025
Accurate adult age estimation (AAE) is critical for forensic and anthropological applications, yet traditional methods relying on bone mineral density (BMD) face significant challenges due to biological variability and methodological limitations. This study aims to develop an end-to-end Deep Learning (DL) based pipeline for automated AAE using BMD from proximal femoral CT scans. The main objectives are to construct a large-scale dataset of 5151 CT scans from real-world clinical and cadaver cohorts, fine-tune the Segment Anything Model (SAM) for accurate femoral bone segmentation, and evaluate multiple convolutional neural networks (CNNs) for precise age estimation based on segmented BMD data. Model performance was assessed through cross-validation, internal clinical testing, and external post-mortem validation. SAM achieved excellent segmentation performance with a Dice coefficient of 0.928 and an average intersection over union (mIoU) of 0.869. The CNN models achieved an average mean absolute error (MAE) of 5.20 years in cross-validation (male: 5.72; female: 4.51), which improved to 4.98 years in the independent clinical test set (male: 5.32; female: 4.56). External validation on the post-mortem dataset revealed an MAE of 6.91 years, with 6.97 for males and 6.69 for females. Ensemble learning further improved accuracy, reducing MAE to 4.78 years (male: 5.12; female: 4.35) in the internal test set, and 6.58 years (male: 6.64; female: 6.37) in the external validation set. These findings highlight the feasibility of dl-driven AAE and its potential for forensic applications, offering a fully automated framework for robust age estimation.

Tailored self-supervised pretraining improves brain MRI diagnostic models.

Huang X, Wang Z, Zhou W, Yang K, Wen K, Liu H, Huang S, Lyu M

pubmed logopapersJul 1 2025
Self-supervised learning has shown potential in enhancing deep learning methods, yet its application in brain magnetic resonance imaging (MRI) analysis remains underexplored. This study seeks to leverage large-scale, unlabeled public brain MRI datasets to improve the performance of deep learning models in various downstream tasks for the development of clinical decision support systems. To enhance training efficiency, data filtering methods based on image entropy and slice positions were developed, condensing a combined dataset of approximately 2 million images from fastMRI-brain, OASIS-3, IXI, and BraTS21 into a more focused set of 250 K images enriched with brain features. The Momentum Contrast (MoCo) v3 algorithm was then employed to learn these image features, resulting in robustly pretrained models specifically tailored to brain MRI. The pretrained models were subsequently evaluated in tumor classification, lesion detection, hippocampal segmentation, and image reconstruction tasks. The results demonstrate that our brain MRI-oriented pretraining outperformed both ImageNet pretraining and pretraining on larger multi-organ, multi-modality medical datasets, achieving a ∼2.8 % increase in 4-class tumor classification accuracy, a ∼0.9 % improvement in tumor detection mean average precision, a ∼3.6 % gain in adult hippocampal segmentation Dice score, and a ∼0.1 PSNR improvement in reconstruction at 2-fold acceleration. This study underscores the potential of self-supervised learning for brain MRI using large-scale, tailored datasets derived from public sources.

Deep learning-based auto-contouring of organs/structures-at-risk for pediatric upper abdominal radiotherapy.

Ding M, Maspero M, Littooij AS, van Grotel M, Fajardo RD, van Noesel MM, van den Heuvel-Eibrink MM, Janssens GO

pubmed logopapersJul 1 2025
This study aimed to develop a computed tomography (CT)-based multi-organ segmentation model for delineating organs-at-risk (OARs) in pediatric upper abdominal tumors and evaluate its robustness across multiple datasets. In-house postoperative CTs from pediatric patients with renal tumors and neuroblastoma (n = 189) and a public dataset (n = 189) with CTs covering thoracoabdominal regions were used. Seventeen OARs were delineated: nine by clinicians (Type 1) and eight using TotalSegmentator (Type 2). Auto-segmentation models were trained using in-house (Model-PMC-UMCU) and a combined dataset of public data (Model-Combined). Performance was assessed with Dice Similarity Coefficient (DSC), 95 % Hausdorff Distance (HD95), and mean surface distance (MSD). Two clinicians rated clinical acceptability on a 5-point Likert scale across 15 patient contours. Model robustness was evaluated against sex, age, intravenous contrast, and tumor type. Model-PMC-UMCU achieved mean DSC values above 0.95 for five of nine OARs, while the spleen and heart ranged between 0.90 and 0.95. The stomach-bowel and pancreas exhibited DSC values below 0.90. Model-Combined demonstrated improved robustness across both datasets. Clinical evaluation revealed good usability, with both clinicians rating six of nine Type 1 OARs above four and six of eight Type 2 OARs above three. Significant performance differences were only found across age groups in both datasets, specifically in the left lung and pancreas. The 0-2 age group showed the lowest performance. A multi-organ segmentation model was developed, showcasing enhanced robustness when trained on combined datasets. This model is suitable for various OARs and can be applied to multiple datasets in clinical settings.

Association of Psychological Resilience With Decelerated Brain Aging in Cognitively Healthy World Trade Center Responders.

Seeley SH, Fremont R, Schreiber Z, Morris LS, Cahn L, Murrough JW, Schiller D, Charney DS, Pietrzak RH, Perez-Rodriguez MM, Feder A

pubmed logopapersJul 1 2025
Despite their exposure to potentially traumatic stressors, the majority of World Trade Center (WTC) responders-those who worked on rescue, recovery, and cleanup efforts on or following September 11, 2001-have shown psychological resilience, never developing long-term psychopathology. Psychological resilience may be protective against the earlier age-related cognitive changes associated with posttraumatic stress disorder (PTSD) in this cohort. In the current study, we calculated the difference between estimated brain age from structural magnetic resonance imaging (MRI) data and chronological age in WTC responders who participated in a parent functional MRI study of resilience (<i>N</i> = 97). We hypothesized that highly resilient responders would show the least brain aging and explored associations between brain aging and psychological and cognitive measures. WTC responders screened for the absence of cognitive impairment were classified into 3 groups: a WTC-related PTSD group (<i>n</i> = 32), a Highly Resilient group without lifetime psychopathology despite high WTC-related exposure (<i>n</i> = 34), and a Lower WTC-Exposed control group also without lifetime psychopathology (<i>n</i> = 31). We used <i>BrainStructureAges</i>, a deep learning algorithm that estimates voxelwise age from T1-weighted MRI data to calculate decelerated (or accelerated) brain aging relative to chronological age. Globally, brain aging was decelerated in the Highly Resilient group and accelerated in the PTSD group, with a significant group difference (<i>p</i> = .021, Cohen's <i>d</i> = 0.58); the Lower WTC-Exposed control group exhibited no significant brain age gap or group difference. Lesser brain aging was associated with resilience-linked factors including lower emotional suppression, greater optimism, and better verbal learning. Cognitively healthy WTC responders show differences in brain aging related to resilience and PTSD.

Machine learning in neuroimaging and computational pathophysiology of Parkinson's disease: A comprehensive review and meta-analysis.

Sharma K, Shanbhog M, Singh K

pubmed logopapersJul 1 2025
In recent years, machine learning and deep learning have shown potential for improving Parkinson's disease (PD) diagnosis, one of the most common neurodegenerative diseases. This comprehensive analysis examines machine learning and deep learning-based Parkinson's disease diagnosis using MRI, speech, and handwriting datasets. To thoroughly analyze PD, this study collected data from scientific literature, experimental investigations, publicly accessible datasets, and global health reports. This study examines the worldwide historical setting of Parkinson's disease, focusing on its increasing prevalence and inequities in treatment access across various regions. A comprehensive summary consolidates essential findings from clinical investigations and pertinent datasets related to Parkinson's disease management. The worldwide context, prospective treatments, therapies, and drugs for Parkinson's disease have been thoroughly examined. This analysis identifies significant research deficiencies and suggests future methods, emphasizing the necessity for more extensive and diverse datasets and improved model accessibility. The current study proposes the Meta-Park model for diagnosing Parkinson's disease, achieving training, testing, and validation accuracy of 97.67 %, 95 %, and 94.04 %. This method provides a dependable and scalable way to improve clinical decision-making in managing Parkinson's disease. This research seeks to provide innovative, data-driven decisions for early diagnosis and effective treatment by merging the proposed method with a thorough examination of existing interventions, providing renewed hope to patients and the medical community.

Development and validation of an interpretable machine learning model for diagnosing pathologic complete response in breast cancer.

Zhou Q, Peng F, Pang Z, He R, Zhang H, Jiang X, Song J, Li J

pubmed logopapersJul 1 2025
Pathologic complete response (pCR) following neoadjuvant chemotherapy (NACT) is a critical prognostic marker for patients with breast cancer, potentially allowing surgery omission. However, noninvasive and accurate pCR diagnosis remains a significant challenge due to the limitations of current imaging techniques, particularly in cases where tumors completely disappear post-NACT. We developed a novel framework incorporating Dimensional Accumulation for Layered Images (DALI) and an Attention-Box annotation tool to address the unique challenge of analyzing imaging data where target lesions are absent. These methods transform three-dimensional magnetic resonance imaging into two-dimensional representations and ensure consistent target tracking across time-points. Preprocessing techniques, including tissue-region normalization and subtraction imaging, were used to enhance model performance. Imaging features were extracted using radiomics and pretrained deep-learning models, and machine-learning algorithms were integrated into a stacked ensemble model. The approach was developed using the I-SPY 2 dataset and validated with an independent Tangshan People's Hospital cohort. The stacked ensemble model achieved superior diagnostic performance, with an area under the receiver operating characteristic curve of 0.831 (95 % confidence interval, 0.769-0.887) on the test set, outperforming individual models. Tissue-region normalization and subtraction imaging significantly enhanced diagnostic accuracy. SHAP analysis identified variables that contributed to the model predictions, ensuring model interpretability. This innovative framework addresses challenges of noninvasive pCR diagnosis. Integrating advanced preprocessing techniques improves feature quality and model performance, supporting clinicians in identifying patients who can safely omit surgery. This innovation reduces unnecessary treatments and improves quality of life for patients with breast cancer.

Prediction of PD-L1 expression in NSCLC patients using PET/CT radiomics and prognostic modelling for immunotherapy in PD-L1-positive NSCLC patients.

Peng M, Wang M, Yang X, Wang Y, Xie L, An W, Ge F, Yang C, Wang K

pubmed logopapersJul 1 2025
To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival (PFS) and overall survival (OS) in PD-L1-positive patients undergoing first-line immunotherapy. We retrospectively analysed 143 NSCLC patients who underwent pretreatment <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET/CT scans, of whom 86 were PD-L1-positive. Clinical data collected included gender, age, smoking history, Tumor-Node-Metastases (TNM) staging system, pathologic types, laboratory parameters, and PET metabolic parameters. Four machine learning algorithms-Bayes, logistic, random forest, and Supportsupport vector machine (SVM)-were used to build models. The predictive performance was validated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox analyses identified independent predictors of OS and PFS in PD-L1-positive expression patients undergoing immunotherapy, and a nomogram was created to predict OS. A total of 20 models were built for predicting PD-L1 expression. The clinical combined PET/CT radiomics model based on the SVM algorithm performed best (area under curve for training and test sets: 0.914 and 0.877, respectively). The Cox analyses showed that smoking history independently predicted PFS. SUVmean, monocyte percentage and white blood cell count were independent predictors of OS, and the nomogram was created to predict 1-year, 2-year, and 3-year OS based on these three factors. We developed PET/CT-based machine learning models to help predict PD-L1 expression in NSCLC patients and identified independent predictors of PFS and OS in PD-L1-positive patients receiving immunotherapy, thereby aiding precision treatment.

SegQC: a segmentation network-based framework for multi-metric segmentation quality control and segmentation error detection in volumetric medical images.

Specktor-Fadida B, Ben-Sira L, Ben-Bashat D, Joskowicz L

pubmed logopapersJul 1 2025
Quality control (QC) of structures segmentation in volumetric medical images is important for identifying segmentation errors in clinical practice and for facilitating model development by enhancing network performance in semi-supervised and active learning scenarios. This paper introduces SegQC, a novel framework for segmentation quality estimation and segmentation error detection. SegQC computes an estimate measure of the quality of a segmentation in volumetric scans and in their individual slices and identifies possible segmentation error regions within a slice. The key components of SegQC include: 1) SegQCNet, a deep network that inputs a scan and its segmentation mask and outputs segmentation error probabilities for each voxel in the scan; 2) three new segmentation quality metrics computed from the segmentation error probabilities; 3) a new method for detecting possible segmentation errors in scan slices computed from the segmentation error probabilities. We introduce a novel evaluation scheme to measure segmentation error discrepancies based on an expert radiologist's corrections of automatically produced segmentations that yields smaller observer variability and is closer to actual segmentation errors. We demonstrate SegQC on three fetal structures in 198 fetal MRI scans - fetal brain, fetal body and the placenta. To assess the benefits of SegQC, we compare it to the unsupervised Test Time Augmentation (TTA)-based QC and to supervised autoencoder (AE)-based QC. Our studies indicate that SegQC outperforms TTA-based quality estimation for whole scans and individual slices in terms of Pearson correlation and MAE for fetal body and fetal brain structures segmentation as well as for volumetric overlap metrics estimation of the placenta structure. Compared to both unsupervised TTA and supervised AE methods, SegQC achieves lower MAE for both 3D and 2D Dice estimates and higher Pearson correlation for volumetric Dice. Our segmentation error detection method achieved recall and precision rates of 0.77 and 0.48 for fetal body, and 0.74 and 0.55 for fetal brain segmentation error detection, respectively. Ranking derived from metrics estimation surpasses rankings based on entropy and sum for TTA and SegQCNet estimations, respectively. SegQC provides high-quality metrics estimation for both 2D and 3D medical images as well as error localization within slices, offering important improvements to segmentation QC.

Robust and generalizable artificial intelligence for multi-organ segmentation in ultra-low-dose total-body PET imaging: a multi-center and cross-tracer study.

Wang H, Qiao X, Ding W, Chen G, Miao Y, Guo R, Zhu X, Cheng Z, Xu J, Li B, Huang Q

pubmed logopapersJul 1 2025
Positron Emission Tomography (PET) is a powerful molecular imaging tool that visualizes radiotracer distribution to reveal physiological processes. Recent advances in total-body PET have enabled low-dose, CT-free imaging; however, accurate organ segmentation using PET-only data remains challenging. This study develops and validates a deep learning model for multi-organ PET segmentation across varied imaging conditions and tracers, addressing critical needs for fully PET-based quantitative analysis. This retrospective study employed a 3D deep learning-based model for automated multi-organ segmentation on PET images acquired under diverse conditions, including low-dose and non-attenuation-corrected scans. Using a dataset of 798 patients from multiple centers with varied tracers, model robustness and generalizability were evaluated via multi-center and cross-tracer tests. Ground-truth labels for 23 organs were generated from CT images, and segmentation accuracy was assessed using the Dice similarity coefficient (DSC). In the multi-center dataset from four different institutions, our model achieved average DSC values of 0.834, 0.825, 0.819, and 0.816 across varying dose reduction factors and correction conditions for FDG PET images. In the cross-tracer dataset, the model reached average DSC values of 0.737, 0.573, 0.830, 0.661, and 0.708 for DOTATATE, FAPI, FDG, Grazytracer, and PSMA, respectively. The proposed model demonstrated effective, fully PET-based multi-organ segmentation across a range of imaging conditions, centers, and tracers, achieving high robustness and generalizability. These findings underscore the model's potential to enhance clinical diagnostic workflows by supporting ultra-low dose PET imaging. Not applicable. This is a retrospective study based on collected data, which has been approved by the Research Ethics Committee of Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine.
Page 5 of 45448 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.