Sort by:
Page 492 of 7527514 results

Xu N, Wu J, Cai F, Li X, Xie HB

pubmed logopapersJul 4 2025
This study aims to enhance the accuracy of pneumonia diagnosis from X-ray images by developing a model that integrates Vision Transformer (ViT) and Graph Convolutional Networks (GCN) for improved feature extraction and diagnostic performance. The ViT-GCN model was designed to leverage the strengths of both ViT, which captures global image information by dividing the image into fixed-size patches and processing them in sequence, and GCN, which captures node features and relationships through message passing and aggregation in graph data. A composite loss function combining multivariate cross-entropy, focal loss, and GHM loss was introduced to address dataset imbalance and improve training efficiency on small datasets. The ViT-GCN model demonstrated superior performance, achieving an accuracy of 91.43\% on the COVID-19 chest X-ray database, surpassing existing models in diagnostic accuracy for pneumonia. The study highlights the effectiveness of combining ViT and GCN architectures in medical image diagnosis, particularly in addressing challenges related to small datasets. This approach can lead to more accurate and efficient pneumonia diagnoses, especially in resource-constrained settings where small datasets are common.

Li T, Li B, Zheng C

pubmed logopapersJul 4 2025
Pneumonia, as a serious respiratory disease caused by bacterial, viral or fungal infections, is an important cause of increased morbidity and mortality in high-risk populations (e.g.the elderly, infants and young children, and immunodeficient patients) worldwide. Early diagnosis is decisive for improving patient prognosis. In this study, we propose a Dual-Branch Attention Fusion Network based on transfer learning, aiming to improve the accuracy of pneumonia classification in lung X-ray images. The model adopts a dual-branch feature extraction architecture: independent feature extraction paths are constructed based on pre-trained convolutional neural networks (CNNs) and structural spatial state models, respectively, and feature complementarity is achieved through a feature fusion strategy. In the fusion stage, a Self-Attention Mechanism is introduced to dynamically weight the feature representations of different paths, which effectively improves the characterisation of key lesion regions. The experiments are carried out based on the publicly available ChestX-ray dataset, and through data enhancement, migration learning optimisation and hyper-parameter tuning, the model achieves an accuracy of 97.78% on an independent test set, and the experimental results fully demonstrate the excellent performance of the model in the field of pneumonia diagnosis, which provides a new and powerful tool for the rapid and accurate diagnosis of pneumonia in clinical practice, and our methodology provides a high--performance computational framework for intelligent pneumonia Early screening provides a high-performance computing framework, and its architecture design of multipath and attention fusion can provide a methodological reference for other medical image analysis tasks.&#xD.

Muraoka H, Kaneda T, Ito K, Otsuka K, Tokunaga S

pubmed logopapersJul 4 2025
Although most odontogenic lesions in the jaw are benign, treatment varies widely depending on the nature of the lesion. This study was performed to assess the ability of a machine learning (ML) model using computed tomography (CT) and magnetic resonance imaging (MRI) radiomic features to classify odontogenic cysts and tumours. CT and MRI data from patients with odontogenic lesions including dentigerous cysts, odontogenic keratocysts, and ameloblastomas were analysed. Manual segmentation of the CT image and the apparent diffusion coefficient (ADC) map from diffusion-weighted MRI was performed to extract radiomic features. The extracted radiomic features were split into training (70%) and test (30%) sets. The random forest model was adjusted or optimized using 5-fold stratified cross-validation within the training set and assessed on a separate hold-out test set. Analysis of the CT-based ML model showed cross-validation accuracy of 0.59 and 0.60 for the training set and test set, respectively, with precision, recall, and F1 score all being 0.57. Analysis of the ADC-based ML model showed cross-validation accuracy of 0.90 and 0.94 for the training set and test set, respectively; the precision, recall, and F1 score were all 0.87. ML models, particularly when using MRI radiological features, can effectively classify odontogenic lesions.

Matheson AM, Bdaiwi AS, Willmering MM, Hysinger EB, McCormack FX, Walkup LL, Cleveland ZI, Woods JC

pubmed logopapersJul 4 2025
Hyperpolarized <sup>129</sup>Xenon magnetic resonance imaging (MRI) measures the extent of lung ventilation by ventilation defect percent (VDP), but VDP alone cannot distinguish between diseases. Prior studies have reported anecdotal evidence of disease-specific defect patterns such as wedge-shaped defects in asthma and polka-dot defects in lymphangioleiomyomatosis (LAM). Neural network artificial intelligence can evaluate image shapes and textures to classify images, but this has not been attempted in xenon MRI. We hypothesized that an artificial intelligence network trained on ventilation MRI could classify diseases based on spatial patterns in lung MR images alone. Xenon MRI data in six pulmonary conditions (control, asthma, bronchiolitis obliterans syndrome, bronchopulmonary dysplasia, cystic fibrosis, LAM) were used to train convolutional neural networks. Network performance was assessed with top-1 and top-2 accuracy, recall, precision, and one-versus-all area under the curve (AUC). Gradient class-activation-mapping (Grad-CAM) was used to visualize what parts of the images were important for classification. Training/testing data were collected from 262 participants. The top performing network (VGG-16) had top-1 accuracy=56%, top-2 accuracy=78%, recall=.30, precision=.70, and AUC=.85. The network performed better on larger classes (top-1 accuracy: control=62% [n=57], CF=67% [n=85], LAM=69% [n=61]) and outperformed human observers (human top-1 accuracy=40%, network top-1 accuracy=61% on a single training fold). We developed an artificial intelligence tool that could classify disease from xenon ventilation images alone that outperformed human observers. This suggests that xenon images have additional, disease-specific information that could be useful for cases that are clinically challenging or for disease phenotyping.

Yang D, Li T, Li L, Chen S, Li X

pubmed logopapersJul 4 2025
The cytologic diagnosis of thyroid nodules' benign and malignant nature based on cytological smears obtained through ultrasound-guided fine-needle aspiration is crucial for determining subsequent treatment plans. The development of artificial intelligence (AI) can assist pathologists in improving the efficiency and accuracy of cytological diagnoses. We propose a novel diagnostic model based on a network architecture that integrates cytologic images and digital ultrasound image features (CI-DUF) to solve the multi-class classification task of thyroid fine-needle aspiration cytology. We compare this model with a model relying solely on cytologic images (CI) and evaluate its performance and clinical application potential in thyroid cytology diagnosis. A retrospective analysis was conducted on 384 patients with 825 thyroid cytologic images. These images were used as a dataset for training the models, which were divided into training and testing sets in an 8:2 ratio to assess the performance of both the CI and CI-DUF diagnostic models. The AUROC of the CI model for thyroid cytology diagnosis was 0.9119, while the AUROC of the CI-DUF diagnostic model was 0.9326. Compared with the CI model, the CI-DUF model showed significantly increased accuracy, sensitivity, and specificity in the cytologic classification of papillary carcinoma, follicular neoplasm, medullary carcinoma, and benign lesions. The proposed CI-DUF diagnostic model, which intergrates multi-modal information, shows better diagnostic performance than the CI model that relies only on cytologic images, particularly excelling in thyroid cytology classification.

Lee G, Ye DH, Oh SH

pubmed logopapersJul 4 2025
In magnetic resonance imaging (MRI), variations in scan parameters and scanner specifications can result in differences in image appearance. To minimize these differences, harmonization in MRI has been suggested as a crucial image processing technique. In this study, we developed an MR physics-based harmonization framework, Physics-Constrained Deep Neural Network for multisite and multiscanner Harmonization (PhyCHarm). PhyCHarm includes two deep neural networks: (1) the Quantitative Maps Generator to generate T<sub>1</sub>- and M<sub>0</sub>-maps and (2) the Harmonization Network. We used an open dataset consisting of 3T MP2RAGE images from 50 healthy individuals for the Quantitative Maps Generator and a traveling dataset consisting of 3T T<sub>1</sub>w images from 9 healthy individuals for the Harmonization Network. PhyCHarm was evaluated using the structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and normalized-root-mean square error (NRMSE) for the Quantitative Maps Generator, and using SSIM, PSNR, and volumetric analysis for the Harmonization network, respectively. PhyCHarm demonstrated increased SSIM and PSNR, the highest Dice score in the FSL FAST segmentation results for gray and white matter compared to U-Net, Pix2Pix, CALAMITI, and HarmonizingFlows. PhyCHarm showed a greater reduction in volume differences after harmonization for gray and white matter than U-Net, Pix2Pix, CALAMITI, or HarmonizingFlows. As an initial step toward developing advanced harmonization techniques, we investigated the applicability of physics-based constraints within a supervised training strategy. The proposed physics constraints could be integrated with unsupervised methods, paving the way for more sophisticated harmonization qualities.

Erdur AC, Scholz D, Nguyen QM, Buchner JA, Mayinger M, Christ SM, Brunner TB, Wittig A, Zimmer C, Meyer B, Guckenberger M, Andratschke N, El Shafie RA, Debus JU, Rogers S, Riesterer O, Schulze K, Feldmann HJ, Blanck O, Zamboglou C, Bilger-Z A, Grosu AL, Wolff R, Eitz KA, Combs SE, Bernhardt D, Wiestler B, Rueckert D, Peeken JC

pubmed logopapersJul 4 2025
This study investigates the use of Vision Transformers (ViTs) to predict Freedom from Local Failure (FFLF) in patients with brain metastases using pre-operative MRI scans. The goal is to develop a model that enhances risk stratification and informs personalized treatment strategies. Within the AURORA retrospective trial, patients (n = 352) who received surgical resection followed by post-operative stereotactic radiotherapy (SRT) were collected from seven hospitals. We trained our ViT for the direct image-to-risk task on T1-CE and FLAIR sequences and combined clinical features along the way. We employed segmentation-guided image modifications, model adaptations, and specialized patient sampling strategies during training. The model was evaluated with five-fold cross-validation and ensemble learning across all validation runs. An external, international test cohort (n = 99) within the dataset was used to assess the generalization capabilities of the model, and saliency maps were generated for explainability analysis. We achieved a competent C-Index score of 0.7982 on the test cohort, surpassing all clinical, CNN-based, and hybrid baselines. Kaplan-Meier analysis showed significant FFLF risk stratification. Saliency maps focusing on the BM core confirmed that model explanations aligned with expert observations. Our ViT-based model offers a potential for personalized treatment strategies and follow-up regimens in patients with brain metastases. It provides an alternative to radiomics as a robust, automated tool for clinical workflows, capable of improving patient outcomes through effective risk assessment and stratification.

Shehroz S. Khan, Petar Przulj, Ahmed Ashraf, Ali Abedi

arxiv logopreprintJul 4 2025
The global demand for radiologists is increasing rapidly due to a growing reliance on medical imaging services, while the supply of radiologists is not keeping pace. Advances in computer vision and image processing technologies present significant potential to address this gap by enhancing radiologists' capabilities and improving diagnostic accuracy. Large language models (LLMs), particularly generative pre-trained transformers (GPTs), have become the primary approach for understanding and generating textual data. In parallel, vision transformers (ViTs) have proven effective at converting visual data into a format that LLMs can process efficiently. In this paper, we present ChestGPT, a deep-learning framework that integrates the EVA ViT with the Llama 2 LLM to classify diseases and localize regions of interest in chest X-ray images. The ViT converts X-ray images into tokens, which are then fed, together with engineered prompts, into the LLM, enabling joint classification and localization of diseases. This approach incorporates transfer learning techniques to enhance both explainability and performance. The proposed method achieved strong global disease classification performance on the VinDr-CXR dataset, with an F1 score of 0.76, and successfully localized pathologies by generating bounding boxes around the regions of interest. We also outline several task-specific prompts, in addition to general-purpose prompts, for scenarios radiologists might encounter. Overall, this framework offers an assistive tool that can lighten radiologists' workload by providing preliminary findings and regions of interest to facilitate their diagnostic process.

Zhiling Yan, Sifan Song, Dingjie Song, Yiwei Li, Rong Zhou, Weixiang Sun, Zhennong Chen, Sekeun Kim, Hui Ren, Tianming Liu, Quanzheng Li, Xiang Li, Lifang He, Lichao Sun

arxiv logopreprintJul 4 2025
Recent "segment anything" efforts show promise by learning from large-scale data, but adapting such models directly to medical images remains challenging due to the complexity of medical data, noisy annotations, and continual learning requirements across diverse modalities and anatomical structures. In this work, we propose SAMed-2, a new foundation model for medical image segmentation built upon the SAM-2 architecture. Specifically, we introduce a temporal adapter into the image encoder to capture image correlations and a confidence-driven memory mechanism to store high-certainty features for later retrieval. This memory-based strategy counters the pervasive noise in large-scale medical datasets and mitigates catastrophic forgetting when encountering new tasks or modalities. To train and evaluate SAMed-2, we curate MedBank-100k, a comprehensive dataset spanning seven imaging modalities and 21 medical segmentation tasks. Our experiments on both internal benchmarks and 10 external datasets demonstrate superior performance over state-of-the-art baselines in multi-task scenarios. The code is available at: https://github.com/ZhilingYan/Medical-SAM-Bench.

Tao Tang, Shijie Xu, Yiting Wu, Zhixiang Lu

arxiv logopreprintJul 4 2025
The clinical utility of deep learning models for medical image segmentation is severely constrained by their inability to generalize to unseen domains. This failure is often rooted in the models learning spurious correlations between anatomical content and domain-specific imaging styles. To overcome this fundamental challenge, we introduce Causal-SAM-LLM, a novel framework that elevates Large Language Models (LLMs) to the role of causal reasoners. Our framework, built upon a frozen Segment Anything Model (SAM) encoder, incorporates two synergistic innovations. First, Linguistic Adversarial Disentanglement (LAD) employs a Vision-Language Model to generate rich, textual descriptions of confounding image styles. By training the segmentation model's features to be contrastively dissimilar to these style descriptions, it learns a representation robustly purged of non-causal information. Second, Test-Time Causal Intervention (TCI) provides an interactive mechanism where an LLM interprets a clinician's natural language command to modulate the segmentation decoder's features in real-time, enabling targeted error correction. We conduct an extensive empirical evaluation on a composite benchmark from four public datasets (BTCV, CHAOS, AMOS, BraTS), assessing generalization under cross-scanner, cross-modality, and cross-anatomy settings. Causal-SAM-LLM establishes a new state of the art in out-of-distribution (OOD) robustness, improving the average Dice score by up to 6.2 points and reducing the Hausdorff Distance by 15.8 mm over the strongest baseline, all while using less than 9% of the full model's trainable parameters. Our work charts a new course for building robust, efficient, and interactively controllable medical AI systems.
Page 492 of 7527514 results
Show
per page

Ready to Sharpen Your Edge?

Subscribe to join 7,500+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.