Machine learning approach using radiomics features to distinguish odontogenic cysts and tumours.

Authors

Muraoka H,Kaneda T,Ito K,Otsuka K,Tokunaga S

Affiliations (2)

  • Department of Radiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan. Electronic address: [email protected].
  • Department of Radiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.

Abstract

Although most odontogenic lesions in the jaw are benign, treatment varies widely depending on the nature of the lesion. This study was performed to assess the ability of a machine learning (ML) model using computed tomography (CT) and magnetic resonance imaging (MRI) radiomic features to classify odontogenic cysts and tumours. CT and MRI data from patients with odontogenic lesions including dentigerous cysts, odontogenic keratocysts, and ameloblastomas were analysed. Manual segmentation of the CT image and the apparent diffusion coefficient (ADC) map from diffusion-weighted MRI was performed to extract radiomic features. The extracted radiomic features were split into training (70%) and test (30%) sets. The random forest model was adjusted or optimized using 5-fold stratified cross-validation within the training set and assessed on a separate hold-out test set. Analysis of the CT-based ML model showed cross-validation accuracy of 0.59 and 0.60 for the training set and test set, respectively, with precision, recall, and F1 score all being 0.57. Analysis of the ADC-based ML model showed cross-validation accuracy of 0.90 and 0.94 for the training set and test set, respectively; the precision, recall, and F1 score were all 0.87. ML models, particularly when using MRI radiological features, can effectively classify odontogenic lesions.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.