Sort by:
Page 47 of 3993982 results

Integrating Time and Frequency Domain Features of fMRI Time Series for Alzheimer's Disease Classification Using Graph Neural Networks.

Peng W, Li C, Ma Y, Dai W, Fu D, Liu L, Liu L, Yu N, Liu J

pubmed logopapersAug 2 2025
Accurate and early diagnosis of Alzheimer's Disease (AD) is crucial for timely interventions and treatment advancement. Functional Magnetic Resonance Imaging (fMRI), measuring brain blood-oxygen level changes over time, is a powerful AD-diagnosis tool. However, current fMRI-based AD diagnosis methods rely on noise-susceptible time-domain features and focus only on synchronous brain-region interactions in the same time phase, neglecting asynchronous ones. To overcome these issues, we propose Frequency-Time Fusion Graph Neural Network (FTF-GNN). It integrates frequency- and time-domain features for robust AD classification, considering both asynchronous and synchronous brain-region interactions. First, we construct a fully connected hypervariate graph, where nodes represent brain regions and their Blood Oxygen Level-Dependent (BOLD) values at a time series point. A Discrete Fourier Transform (DFT) transforms these BOLD values from the spatial to the frequency domain for frequency-component analysis. Second, a Fourier-based Graph Neural Network (FourierGNN) processes the frequency features to capture asynchronous brain region connectivity patterns. Third, these features are converted back to the time domain and reshaped into a matrix where rows represent brain regions and columns represent their frequency-domain features at each time point. Each brain region then fuses its frequency-domain features with position encoding along the time series, preserving temporal and spatial information. Next, we build a brain-region network based on synchronous BOLD value associations and input the brain-region network and the fused features into a Graph Convolutional Network (GCN) to capture synchronous brain region connectivity patterns. Finally, a fully connected network classifies the brain-region features. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate the method's effectiveness: Our model achieves 91.26% accuracy and 96.79% AUC in AD versus Normal Control (NC) classification, showing promising performance. For early-stage detection, it attains state-of-the-art performance in distinguishing NC from Late Mild Cognitive Impairment (LMCI) with 87.16% accuracy and 93.22% AUC. Notably, in the challenging task of differentiating LMCI from AD, FTF-GNN achieves optimal performance (85.30% accuracy, 94.56% AUC), while also delivering competitive results (77.40% accuracy, 91.17% AUC) in distinguishing Early MCI (EMCI) from LMCI-the most clinically complex subtype classification. These results indicate that leveraging complementary frequency- and time-domain information, along with considering asynchronous and synchronous brain-region interactions, can address existing approach limitations, offering a robust neuroimaging-based diagnostic solution.

Deep learning-driven incidental detection of vertebral fractures in cancer patients: advancing diagnostic precision and clinical management.

Mniai EM, Laletin V, Tselikas L, Assi T, Bonnet B, Camez AO, Zemmouri A, Muller S, Moussa T, Chaibi Y, Kiewsky J, Quenet S, Avare C, Lassau N, Balleyguier C, Ayobi A, Ammari S

pubmed logopapersAug 2 2025
Vertebral compression fractures (VCFs) are the most prevalent skeletal manifestations of osteoporosis in cancer patients. Yet, they are frequently missed or not reported in routine clinical radiology, adversely impacting patient outcomes and quality of life. This study evaluates the diagnostic performance of a deep-learning (DL)-based application and its potential to reduce the miss rate of incidental VCFs in a high-risk cancer population. We retrospectively analysed thoraco-abdomino-pelvic (TAP) CT scans from 1556 patients with stage IV cancer collected consecutively over a 4-month period (September-December 2023) in a tertiary cancer center. A DL-based application flagged cases positive for VCFs, which were subsequently reviewed by two expert radiologists for validation. Additionally, grade 3 fractures identified by the application were independently assessed by two expert interventional radiologists to determine their eligibility for vertebroplasty. Of the 1556 cases, 501 were flagged as positive for VCF by the application, with 436 confirmed as true positives by expert review, yielding a positive predictive value (PPV) of 87%. Common causes of false positives included sclerotic vertebral metastases, scoliosis, and vertebrae misidentification. Notably, 83.5% (364/436) of true positive VCFs were absent from radiology reports, indicating a substantial non-report rate in routine practice. Ten grade 3 fractures were overlooked or not reported by radiologists. Among them, 9 were deemed suitable for vertebroplasty by expert interventional radiologists. This study underscores the potential of DL-based applications to improve the detection of VCFs. The analyzed tool can assist radiologists in detecting more incidental vertebral fractures in adult cancer patients, optimising timely treatment and reducing associated morbidity and economic burden. Moreover, it might enhance patient access to interventional treatments such as vertebroplasty. These findings highlight the transformative role that DL can play in optimising clinical management and outcomes for osteoporosis-related VCFs in cancer patients.

Advances in renal cancer: diagnosis, treatment, and emerging technologies.

Saida T, Iima M, Ito R, Ueda D, Nishioka K, Kurokawa R, Kawamura M, Hirata K, Honda M, Takumi K, Ide S, Sugawara S, Watabe T, Sakata A, Yanagawa M, Sofue K, Oda S, Naganawa S

pubmed logopapersAug 2 2025
This review provides a comprehensive overview of current practices and recent advancements in the diagnosis and treatment of renal cancer. It introduces updates in histological classification and explains the imaging characteristics of each tumour based on these changes. The review highlights state-of-the-art imaging modalities, including magnetic resonance imaging, computed tomography, positron emission tomography, and ultrasound, emphasising their crucial role in tumour characterisation and optimising treatment planning. Emerging technologies, such as radiomics and artificial intelligence, are also discussed for their transformative impact on enhancing diagnostic precision, prognostic prediction, and personalised patient management. Furthermore, the review explores current treatment options, including minimally invasive techniques such as cryoablation, radiofrequency ablation, and stereotactic body radiation therapy, as well as systemic therapies such as immune checkpoint inhibitors and targeted therapies.

Temporal consistency-aware network for renal artery segmentation in X-ray angiography.

Yang B, Li C, Fezzi S, Fan Z, Wei R, Chen Y, Tavella D, Ribichini FL, Zhang S, Sharif F, Tu S

pubmed logopapersAug 2 2025
Accurate segmentation of renal arteries from X-ray angiography videos is crucial for evaluating renal sympathetic denervation (RDN) procedures but remains challenging due to dynamic changes in contrast concentration and vessel morphology across frames. The purpose of this study is to propose TCA-Net, a deep learning model that improves segmentation consistency by leveraging local and global contextual information in angiography videos. Our approach utilizes a novel deep learning framework that incorporates two key modules: a local temporal window vessel enhancement module and a global vessel refinement module (GVR). The local module fuses multi-scale temporal-spatial features to improve the semantic representation of vessels in the current frame, while the GVR module integrates decoupled attention strategies (video-level and object-level attention) and gating mechanisms to refine global vessel information and eliminate redundancy. To further improve segmentation consistency, a temporal perception consistency loss function is introduced during training. We evaluated our model using 195 renal artery angiography sequences for development and tested it on an external dataset from 44 patients. The results demonstrate that TCA-Net achieves an F1-score of 0.8678 for segmenting renal arteries, outperforming existing state-of-the-art segmentation methods. We present TCA-Net, a deep learning-based model that significantly improves segmentation consistency for renal artery angiography videos. By effectively leveraging both local and global temporal contextual information, TCA-Net outperforms current methods and provides a reliable tool for assessing RDN procedures.

Evaluating the Efficacy of Various Deep Learning Architectures for Automated Preprocessing and Identification of Impacted Maxillary Canines in Panoramic Radiographs.

Alenezi O, Bhattacharjee T, Alseed HA, Tosun YI, Chaudhry J, Prasad S

pubmed logopapersAug 2 2025
Previously, automated cropping and a reasonable classification accuracy for distinguishing impacted and non-impacted canines were demonstrated. This study evaluates multiple convolutional neural network (CNN) architectures for improving accuracy as a step towards a fully automated software for identification of impacted maxillary canines (IMCs) in panoramic radiographs (PRs). Eight CNNs (SqueezeNet, GoogLeNet, NASNet-Mobile, ShuffleNet, VGG-16, ResNet 50, DenseNet 201, and Inception V3) were compared in terms of their ability to classify 2 groups of PRs (impacted: n = 91; and non-impacted: n = 91 maxillary canines) before pre-processing and after applying automated cropping. For the PRs with impacted and non-impacted maxillary canines, GoogLeNet achieved the highest classification performance among the tested CNN architectures. Area under the curve (AUC) values of the Receiver Operating Characteristic (ROC) analysis without preprocessing and with preprocessing were 0.9 and 0.99 respectively, compared to 0.84 and 0.96 respectively with SqueezeNet. Among the tested CNN architectures, GoogLeNet achieved the highest performance on this dataset for the automated identification of impacted maxillary canines on both cropped and uncropped PRs.

EfficientGFormer: Multimodal Brain Tumor Segmentation via Pruned Graph-Augmented Transformer

Fatemeh Ziaeetabar

arxiv logopreprintAug 2 2025
Accurate and efficient brain tumor segmentation remains a critical challenge in neuroimaging due to the heterogeneous nature of tumor subregions and the high computational cost of volumetric inference. In this paper, we propose EfficientGFormer, a novel architecture that integrates pretrained foundation models with graph-based reasoning and lightweight efficiency mechanisms for robust 3D brain tumor segmentation. Our framework leverages nnFormer as a modality-aware encoder, transforming multi-modal MRI volumes into patch-level embeddings. These features are structured into a dual-edge graph that captures both spatial adjacency and semantic similarity. A pruned, edge-type-aware Graph Attention Network (GAT) enables efficient relational reasoning across tumor subregions, while a distillation module transfers knowledge from a full-capacity teacher to a compact student model for real-time deployment. Experiments on the MSD Task01 and BraTS 2021 datasets demonstrate that EfficientGFormer achieves state-of-the-art accuracy with significantly reduced memory and inference time, outperforming recent transformer-based and graph-based baselines. This work offers a clinically viable solution for fast and accurate volumetric tumor delineation, combining scalability, interpretability, and generalization.

Artificial Intelligence in Abdominal, Gynecological, Obstetric, Musculoskeletal, Vascular and Interventional Ultrasound.

Graumann O, Cui Xin W, Goudie A, Blaivas M, Braden B, Campbell Westerway S, Chammas MC, Dong Y, Gilja OH, Hsieh PC, Jiang Tian A, Liang P, Möller K, Nolsøe CP, Săftoiu A, Dietrich CF

pubmed logopapersAug 2 2025
Artificial Intelligence (AI) is a theoretical framework and systematic development of computational models designed to execute tasks that traditionally require human cognition. In medical imaging, AI is used for various modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and pathologies across multiple organ systems. However, integrating AI into medical ultrasound presents unique challenges compared to modalities like CT and MRI due to its operator-dependent nature and inherent variability in the image acquisition process. AI application to ultrasound holds the potential to mitigate multiple variabilities, recalibrate interpretative consistency, and uncover diagnostic patterns that may be difficult for humans to detect. Progress has led to significant innovation in medical ultrasound-based AI applications, facilitating their adoption in various clinical settings and for multiple diseases. This manuscript primarily aims to provide a concise yet comprehensive exploration of current and emerging AI applications in medical ultrasound within abdominal, musculoskeletal, and obstetric & gynecological and interventional medical ultrasound. The secondary aim is to discuss present limitations and potential challenges such technological implementations may encounter.

[Tips and tricks for the cytological management of cysts].

Lacoste-Collin L, Fabre M

pubmed logopapersAug 2 2025
Fine needle aspiration is a well-known procedure for the diagnosis and management of solid lesions. The approach to cystic lesions on fine needle-aspiration is becoming a popular diagnostic tool due to the increased availability of high-quality cross-sectional imaging such as computed tomography and ultrasound guided procedures like endoscopic ultrasound. Cystic lesions are closed cavities containing liquid, sometimes partially solid with various internal neoplastic and non-neoplastic components. The most frequently punctured cysts are in the neck (thyroid and salivary glands), mediastinum, breast and abdomen (pancreas and liver). The diagnostic accuracy of cytological cyst sampling is highly dependent on laboratory material management. This review highlights how to approach the main features of superficial and deep organ cysts using basic cytological techniques (direct smears, cytocentrifugation), liquid-based cytology and cell block. We show the role of a multimodal approach that can lead to a wider implementation of ancillary tests (biochemical, immunocytochemical and molecular) to improve diagnostic accuracy and clinical management of patients with cystic lesions. In the near future, artificial intelligence models will offer detection, classification and prediction capabilities for various cystic lesions. Two examples in pancreatic and thyroid cytopathology are particularly developed.

Classification of Brain Tumors using Hybrid Deep Learning Models

Neerav Nemchand Gala

arxiv logopreprintAug 2 2025
The use of Convolutional Neural Networks (CNNs) has greatly improved the interpretation of medical images. However, conventional CNNs typically demand extensive computational resources and large training datasets. To address these limitations, this study applied transfer learning to achieve strong classification performance using fewer training samples. Specifically, the study compared EfficientNetV2 with its predecessor, EfficientNet, and with ResNet50 in classifying brain tumors into three types: glioma, meningioma, and pituitary tumors. Results showed that EfficientNetV2 delivered superior performance compared to the other models. However, this improvement came at the cost of increased training time, likely due to the model's greater complexity.

Multimodal Attention-Aware Fusion for Diagnosing Distal Myopathy: Evaluating Model Interpretability and Clinician Trust

Mohsen Abbaspour Onari, Lucie Charlotte Magister, Yaoxin Wu, Amalia Lupi, Dario Creazzo, Mattia Tordin, Luigi Di Donatantonio, Emilio Quaia, Chao Zhang, Isel Grau, Marco S. Nobile, Yingqian Zhang, Pietro Liò

arxiv logopreprintAug 2 2025
Distal myopathy represents a genetically heterogeneous group of skeletal muscle disorders with broad clinical manifestations, posing diagnostic challenges in radiology. To address this, we propose a novel multimodal attention-aware fusion architecture that combines features extracted from two distinct deep learning models, one capturing global contextual information and the other focusing on local details, representing complementary aspects of the input data. Uniquely, our approach integrates these features through an attention gate mechanism, enhancing both predictive performance and interpretability. Our method achieves a high classification accuracy on the BUSI benchmark and a proprietary distal myopathy dataset, while also generating clinically relevant saliency maps that support transparent decision-making in medical diagnosis. We rigorously evaluated interpretability through (1) functionally grounded metrics, coherence scoring against reference masks and incremental deletion analysis, and (2) application-grounded validation with seven expert radiologists. While our fusion strategy boosts predictive performance relative to single-stream and alternative fusion strategies, both quantitative and qualitative evaluations reveal persistent gaps in anatomical specificity and clinical usefulness of the interpretability. These findings highlight the need for richer, context-aware interpretability methods and human-in-the-loop feedback to meet clinicians' expectations in real-world diagnostic settings.
Page 47 of 3993982 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.