Sort by:
Page 44 of 68675 results

Edge Computing for Physics-Driven AI in Computational MRI: A Feasibility Study

Yaşar Utku Alçalar, Yu Cao, Mehmet Akçakaya

arxiv logopreprintMay 30 2025
Physics-driven artificial intelligence (PD-AI) reconstruction methods have emerged as the state-of-the-art for accelerating MRI scans, enabling higher spatial and temporal resolutions. However, the high resolution of these scans generates massive data volumes, leading to challenges in transmission, storage, and real-time processing. This is particularly pronounced in functional MRI, where hundreds of volumetric acquisitions further exacerbate these demands. Edge computing with FPGAs presents a promising solution for enabling PD-AI reconstruction near the MRI sensors, reducing data transfer and storage bottlenecks. However, this requires optimization of PD-AI models for hardware efficiency through quantization and bypassing traditional FFT-based approaches, which can be a limitation due to their computational demands. In this work, we propose a novel PD-AI computational MRI approach optimized for FPGA-based edge computing devices, leveraging 8-bit complex data quantization and eliminating redundant FFT/IFFT operations. Our results show that this strategy improves computational efficiency while maintaining reconstruction quality comparable to conventional PD-AI methods, and outperforms standard clinical methods. Our approach presents an opportunity for high-resolution MRI reconstruction on resource-constrained devices, highlighting its potential for real-world deployment.

The Impact of Model-based Deep-learning Reconstruction Compared with that of Compressed Sensing-Sensitivity Encoding on the Image Quality and Precision of Cine Cardiac MR in Evaluating Left-ventricular Volume and Strain: A Study on Healthy Volunteers.

Tsuneta S, Aono S, Kimura R, Kwon J, Fujima N, Ishizaka K, Nishioka N, Yoneyama M, Kato F, Minowa K, Kudo K

pubmed logopapersMay 30 2025
To evaluate the effect of model-based deep-learning reconstruction (DLR) compared with that of compressed sensing-sensitivity encoding (CS) on cine cardiac magnetic resonance (CMR). Cine CMR images of 10 healthy volunteers were obtained with reduction factors of 2, 4, 6, and 8 and reconstructed using CS and DLR. The visual image quality scores assessed sharpness, image noise, and artifacts. Left-ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) were manually measured. LV global circumferential strain (GCS) was automatically measured using the software. The precision of EDV, ESV, SV, EF, and GCS measurements was compared between CS and DLR using Bland-Altman analysis with full-sampling data as the gold standard. Compared with CS, DLR significantly improved image quality with reduction factors of 6 and 8. The precision of EDV and ESV with a reduction factor of 8, and GCS with reduction factors of 6 and 8 measurements improved with DLR compared with CS, whereas those of SV and EF measurements were not different between DLR and CS. The effect of DLR on cine CMR's image quality and precision in evaluating quantitative volume and strain was equal or superior to that of CS. DLR may replace CS for cine CMR.

Multiclass ensemble framework for enhanced prostate gland Segmentation: Integrating Self-ONN decoders with EfficientNet.

Islam Sumon MS, Chowdhury MEH, Bhuiyan EH, Rahman MS, Khan MM, Al-Hashimi I, Mushtak A, Zoghoul SB

pubmed logopapersMay 30 2025
Digital pathology relies on the morphological architecture of prostate glands to recognize cancerous tissue. Prostate cancer (PCa) originates in walnut shaped prostate gland in the male reproductive system. Deep learning (DL) pipelines can assist in identifying these regions with advanced segmentation techniques which are effective in diagnosing and treating prostate diseases. This facilitates early detection, targeted biopsy, and accurate treatment planning, ensuring consistent, reproducible results while minimizing human error. Automated segmentation techniques trained on MRI datasets can aid in monitoring disease progression which leads to clinical support by developing patient-specific models for personalized medicine. In this study, we present multiclass segmentation models designed to localize the prostate gland and its zonal regions-specifically the peripheral zone (PZ), transition zone (TZ), and the whole gland-by combining EfficientNetB4 encoders with Self-organized Operational Neural Network (Self-ONN)-based decoders. Traditional convolutional neural networks (CNNs) rely on linear neuron models, which limit their ability to capture the complex dynamics of biological neural systems. In contrast, Operational Neural Networks (ONNs), particularly Self-ONNs, address this limitation by incorporating nonlinear and adaptive operations at the neuron level. We evaluated various encoder-decoder configurations and identified that the combination of an EfficientNet-based encoder with a Self-ONN-based decoder yielded the best performance. To further enhance segmentation accuracy, we employed the STAPLE method to ensemble the top three performing models. Our approach was tested on the large-scale, recently updated PI-CAI Challenge dataset using 5-fold cross-validation, achieving Dice scores of 95.33 % for the whole gland and 92.32 % for the combined PZ and TZ regions. These advanced segmentation techniques significantly improve the quality of PCa diagnosis and treatment, contributing to better patient care and outcomes.

Deep learning-driven modality imputation and subregion segmentation to enhance high-grade glioma grading.

Yu J, Liu Q, Xu C, Zhou Q, Xu J, Zhu L, Chen C, Zhou Y, Xiao B, Zheng L, Zhou X, Zhang F, Ye Y, Mi H, Zhang D, Yang L, Wu Z, Wang J, Chen M, Zhou Z, Wang H, Wang VY, Wang E, Xu D

pubmed logopapersMay 30 2025
This study aims to develop a deep learning framework that leverages modality imputation and subregion segmentation to improve grading accuracy in high-grade gliomas. A retrospective analysis was conducted using data from 1,251 patients in the BraTS2021 dataset as the main cohort and 181 clinical cases collected from a medical center between April 2013 and June 2018 (51 years ± 17; 104 males) as the external test set. We propose a PatchGAN-based modality imputation network with an Aggregated Residual Transformer (ART) module combining Transformer self-attention and CNN feature extraction via residual links, paired with a U-Net variant for segmentation. Generative accuracy used PSNR and SSIM for modality conversions, while segmentation performance was measured with DSC and HD95 across necrotic core (NCR), edema (ED), and enhancing tumor (ET) regions. Senior radiologists conducted a comprehensive Likert-based assessment, with diagnostic accuracy evaluated by AUC. Statistical analysis was performed using the Wilcoxon signed-rank test and the DeLong test. The best source-target modality pairs for imputation were T1 to T1ce and T1ce to T2 (p < 0.001). In subregion segmentation, the overall DSC was 0.878 and HD95 was 19.491, with the ET region showing the highest segmentation accuracy (DSC: 0.877, HD95: 12.149). Clinical validation revealed an improvement in grading accuracy by the senior radiologist, with the AUC increasing from 0.718 to 0.913 (P < 0.001) when using the combined imputation and segmentation models. The proposed deep learning framework improves high-grade glioma grading by modality imputation and segmentation, aiding the senior radiologist and offering potential to advance clinical decision-making.

Using AI to triage patients without clinically significant prostate cancer using biparametric MRI and PSA.

Grabke EP, Heming CAM, Hadari A, Finelli A, Ghai S, Lajkosz K, Taati B, Haider MA

pubmed logopapersMay 30 2025
To train and evaluate the performance of a machine learning triaging tool that identifies MRI negative for clinically significant prostate cancer and to compare this against non-MRI models. 2895 MRIs were collected from two sources (1630 internal, 1265 public) in this retrospective study. Risk models compared were: Prostate Cancer Prevention Trial Risk Calculator 2.0, Prostate Biopsy Collaborative Group Calculator, PSA density, U-Net segmentation, and U-Net combined with clinical parameters. The reference standard was histopathology or negative follow-up. Performance metrics were calculated by simulating a triaging workflow compared to radiologist interpreting all exams on a test set of 465 patients. Sensitivity and specificity differences were assessed using the McNemar test. Differences in PPV and NPV were assessed using the Leisenring, Alonzo and Pepe generalized score statistic. Equivalence test p-values were adjusted within each measure using Benjamini-Hochberg correction. Triaging using U-Net with clinical parameters reduced radiologist workload by 12.5% with sensitivity decrease from 93 to 90% (p = 0.023) and specificity increase from 39 to 47% (p < 0.001). This simulated workload reduction was greater than triaging with risk calculators (3.2% and 1.3%, p < 0.001), and comparable to PSA density (8.4%, p = 0.071) and U-Net alone (11.6%, p = 0.762). Both U-Net triaging strategies increased PPV (+ 2.8% p = 0.005 clinical, + 2.2% p = 0.020 nonclinical), unlike non-U-Net strategies (p > 0.05). NPV remained equivalent for all scenarios (p > 0.05). Clinically-informed U-Net triaging correctly ruled out 20 (13.4%) radiologist false positives (12 PI-RADS = 3, 8 PI-RADS = 4). Of the eight (3.6%) false negatives, two were misclassified by the radiologist. No misclassified case was interpreted as PI-RADS 5. Prostate MRI triaging using machine learning could reduce radiologist workload by 12.5% with a 3% sensitivity decrease and 8% specificity increase, outperforming triaging using non-imaging-based risk models. Further prospective validation is required.

Bidirectional Projection-Based Multi-Modal Fusion Transformer for Early Detection of Cerebral Palsy in Infants.

Qi K, Huang T, Jin C, Yang Y, Ying S, Sun J, Yang J

pubmed logopapersMay 30 2025
Periventricular white matter injury (PWMI) is the most frequent magnetic resonance imaging (MRI) finding in infants with Cerebral Palsy (CP). We aim to detect CP and identify subtle, sparse PWMI lesions in infants under two years of age with immature brain structures. Based on the characteristic that the responsible lesions are located within five target regions, we first construct a multi-modal dataset including 243 cases with the mask annotations of five target regions for delineating anatomical structures on T1-Weighted Imaging (T1WI) images, masks for lesions on T2-Weighted Imaging (T2WI) images, and categories (CP or Non-CP). Furthermore, we develop a bidirectional projection-based multi-modal fusion transformer (BiP-MFT), incorporating a Bidirectional Projection Fusion Module (BPFM) for integrating the features between five target regions on T1WI images and lesions on T2WI images. Our BiP-MFT achieves subject-level classification accuracy of 0.90, specificity of 0.87, and sensitivity of 0.94. It surpasses the best results of nine comparative methods, with 0.10, 0.08, and 0.09 improvements in classification accuracy, specificity and sensitivity respectively. Our BPFM outperforms eight compared feature fusion strategies using Transformer and U-Net backbones on our dataset. Ablation studies on the dataset annotations and model components justify the effectiveness of our annotation method and the model rationality. The proposed dataset and codes are available at https://github.com/Kai-Qi/BiP-MFT.

A Study on Predicting the Efficacy of Posterior Lumbar Interbody Fusion Surgery Using a Deep Learning Radiomics Model.

Fang L, Pan Y, Zheng H, Li F, Zhang W, Liu J, Zhou Q

pubmed logopapersMay 30 2025
This study seeks to develop a combined model integrating clinical data, radiomics, and deep learning (DL) for predicting the efficacy of posterior lumbar interbody fusion (PLIF) surgery. A retrospective review was conducted on 461 patients who underwent PLIF for degenerative lumbar diseases. These patients were partitioned into a training set (n=368) and a test set (n=93) in an 8:2 ratio. Clinical models, radiomics models, and DL models were constructed based on logistic regression and random forest, respectively. A combined model was established by integrating these three models. All radiomics and DL features were extracted from sagittal T2-weighted images using 3D slicer software. The least absolute shrinkage and selection operator method selected the optimal radiomics and DL features to build the models. In addition to analyzing the original region of interest (ROI), we also conducted different degrees of mask expansion on the ROI to determine the optimal ROI. The performance of the model was evaluated by using the receiver operating characteristic curve (ROC) and the area under the ROC curve. The differences in AUC were compared by DeLong test. Among the clinical characteristics, patient age, body weight, and preoperative intervertebral distance at the surgical segment are risk factors affecting the fusion outcome. The radiomics model based on MRI with expanded 10 mm mask showed excellent performance (training set AUC=0.814, 95% CI: (0.761-0.866); test set AUC=0.749, 95% CI: [0.631-0.866]). Among all single models, the DL model had the best diagnostic prediction performance, with AUC values of (0.995, 95% CI: [0.991-0.999]) for the training set and (0.803, 95% CI: [0.705-0.902]) for the test set. Compared to all the models, the combined model of clinical features, radiomics features, and DL features had the best diagnostic prediction performance, with AUC values of (0.993, 95% CI: [0.987-0.999]) for the training set and (0.866, 95% CI: [0.778-0.955]) for the test set. The proposed clinical feature-deep learning radiomics model can effectively predict the postoperative efficacy of patients undergoing PLIF surgery and has good clinical applicability.

A Mixed-attention Network for Automated Interventricular Septum Segmentation in Bright-blood Myocardial T2* MRI Relaxometry in Thalassemia.

Wu X, Wang H, Chen Z, Sun S, Lian Z, Zhang X, Peng P, Feng Y

pubmed logopapersMay 30 2025
This study develops a deep-learning method for automatic segmentation of the interventricular septum (IS) in MR images to measure myocardial T2* and estimate cardiac iron deposition in patients with thalassemia. This retrospective study used multiple-gradient-echo cardiac MR scans from 419 thalassemia patients to develop and evaluate the segmentation network. The network was trained on 1.5 T images from Center 1 and evaluated on 3.0 T unseen images from Center 1, all data from Center 2, and the CHMMOTv1 dataset. Model performance was assessed using five metrics, and T2* values were obtained by fitting the network output. Bland-Altman analysis, coefficient of variation (CoV), and regression analysis were used to evaluate the consistency between automatic and manual methods. MA-BBIsegNet achieved a Dice of 0.90 on the internal test set, 0.85 on the external test set, and 0.81 on the CHMMOTv1 dataset. Bland-Altman analysis showed mean differences of 0.08 (95% LoA: -2.79 ∼ 2.63) ms (internal), 0.29 (95% LoA: -4.12 ∼ 3.54) ms (external) and 0.19 (95% LoA: -3.50 ∼ 3.88) ms (CHMMOTv1), with CoV of 8.9%, 6.8%, and 9.3%. Regression analysis yielded r values of 0.98 for the internal and CHMMOTv1 datasets, and 0.99 for the external dataset (p < 0.05). The IS segmentation network based on multiple-gradient-echo bright-blood images yielded T2* values that were in strong agreement with manual measurements, highlighting its potential for the efficient, non-invasive monitoring of myocardial iron deposition in patients with thalassemia.

A combined attention mechanism for brain tumor segmentation of lower-grade glioma in magnetic resonance images.

Hedibi H, Beladgham M, Bouida A

pubmed logopapersMay 29 2025
Low-grade gliomas (LGGs) are among the most problematic brain tumors to reliably segment in FLAIR MRI, and effective delineation of these lesions is critical for clinical diagnosis, treatment planning, and patient monitoring. Nevertheless, conventional U-Net-based approaches usually suffer from the loss of critical structural details owing to repetitive down-sampling, while the encoder features often retain irrelevant information that is not properly utilized by the decoder. To solve these challenges, this paper offers a dual-attention U-shaped design, named ECASE-Unet, which seamlessly integrates Efficient Channel Attention (ECA) and Squeeze-and-Excitation (SE) blocks in both the encoder and decoder stages. By selectively recalibrating channel-wise information, the model increases diagnostically significant regions of interest and reduces noise. Furthermore, dilated convolutions are introduced at the bottleneck layer to capture multi-scale contextual cues without inflating computational complexity, and dropout regularization is systematically applied to prevent overfitting on heterogeneous data. Experimental results on the Kaggle Low-Grade-Glioma dataset suggest that ECASE-Unet greatly outperforms previous segmentation algorithms, reaching a Dice coefficient of 0.9197 and an Intersection over Union (IoU) of 0.8521. Comprehensive ablation studies further reveal that integrating ECA and SE modules delivers complementing benefits, supporting the model's robust efficacy in precisely identifying LGG boundaries. These findings underline the potential of ECASE-Unet to expedite clinical operations and improve patient outcomes. Future work will focus on improving the model's applicability to new MRI modalities and studying the integration of clinical characteristics for a more comprehensive characterization of brain tumors.

Parameter-Free Bio-Inspired Channel Attention for Enhanced Cardiac MRI Reconstruction

Anam Hashmi, Julia Dietlmeier, Kathleen M. Curran, Noel E. O'Connor

arxiv logopreprintMay 29 2025
Attention is a fundamental component of the human visual recognition system. The inclusion of attention in a convolutional neural network amplifies relevant visual features and suppresses the less important ones. Integrating attention mechanisms into convolutional neural networks enhances model performance and interpretability. Spatial and channel attention mechanisms have shown significant advantages across many downstream tasks in medical imaging. While existing attention modules have proven to be effective, their design often lacks a robust theoretical underpinning. In this study, we address this gap by proposing a non-linear attention architecture for cardiac MRI reconstruction and hypothesize that insights from ecological principles can guide the development of effective and efficient attention mechanisms. Specifically, we investigate a non-linear ecological difference equation that describes single-species population growth to devise a parameter-free attention module surpassing current state-of-the-art parameter-free methods.
Page 44 of 68675 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.