Using AI to triage patients without clinically significant prostate cancer using biparametric MRI and PSA.
Authors
Affiliations (9)
Affiliations (9)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
- Division of Urology, Department of Surgical Oncology, Princess Margaret Cancer Center, Toronto, Canada.
- Joint Department of Medical Imaging, Sinai Health System, University Health Network, University of Toronto, Toronto, Canada.
- Department of Biostatistics, University Health Network, Toronto, Canada.
- KITE Research Institute, University Health Network, Toronto, Canada.
- Department of Computer Science, University of Toronto, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. [email protected].
- Joint Department of Medical Imaging, Sinai Health System, University Health Network, University of Toronto, Toronto, Canada. [email protected].
Abstract
To train and evaluate the performance of a machine learning triaging tool that identifies MRI negative for clinically significant prostate cancer and to compare this against non-MRI models. 2895 MRIs were collected from two sources (1630 internal, 1265 public) in this retrospective study. Risk models compared were: Prostate Cancer Prevention Trial Risk Calculator 2.0, Prostate Biopsy Collaborative Group Calculator, PSA density, U-Net segmentation, and U-Net combined with clinical parameters. The reference standard was histopathology or negative follow-up. Performance metrics were calculated by simulating a triaging workflow compared to radiologist interpreting all exams on a test set of 465 patients. Sensitivity and specificity differences were assessed using the McNemar test. Differences in PPV and NPV were assessed using the Leisenring, Alonzo and Pepe generalized score statistic. Equivalence test p-values were adjusted within each measure using Benjamini-Hochberg correction. Triaging using U-Net with clinical parameters reduced radiologist workload by 12.5% with sensitivity decrease from 93 to 90% (p = 0.023) and specificity increase from 39 to 47% (p < 0.001). This simulated workload reduction was greater than triaging with risk calculators (3.2% and 1.3%, p < 0.001), and comparable to PSA density (8.4%, p = 0.071) and U-Net alone (11.6%, p = 0.762). Both U-Net triaging strategies increased PPV (+ 2.8% p = 0.005 clinical, + 2.2% p = 0.020 nonclinical), unlike non-U-Net strategies (p > 0.05). NPV remained equivalent for all scenarios (p > 0.05). Clinically-informed U-Net triaging correctly ruled out 20 (13.4%) radiologist false positives (12 PI-RADS = 3, 8 PI-RADS = 4). Of the eight (3.6%) false negatives, two were misclassified by the radiologist. No misclassified case was interpreted as PI-RADS 5. Prostate MRI triaging using machine learning could reduce radiologist workload by 12.5% with a 3% sensitivity decrease and 8% specificity increase, outperforming triaging using non-imaging-based risk models. Further prospective validation is required.