Sort by:
Page 44 of 1411410 results

Generative Artificial Intelligence to Automate Cerebral Perfusion Mapping in Acute Ischemic Stroke from Non-contrast Head Computed Tomography Images: Pilot Study.

Primiano NJ, Changa AR, Kohli S, Greenspan H, Cahan N, Kummer BR

pubmed logopapersAug 11 2025
Acute ischemic stroke (AIS) is a leading cause of death and long-term disability worldwide, where rapid reperfusion remains critical for salvaging brain tissue. Although CT perfusion (CTP) imaging provides essential hemodynamic information, its limitations-including extended processing times, additional radiation exposure, and variable software outputs-can delay treatment. In contrast, non-contrast head CT (NCHCT) is ubiquitously available in acute stroke settings. This study explores a generative artificial intelligence approach to predict key perfusion parameters (relative cerebral blood flow [rCBF] and time-to-maximum [Tmax]) directly from NCHCT, potentially streamlining stroke imaging workflows and expanding access to critical perfusion data. We retrospectively identified patients evaluated for AIS who underwent NCHCT, CT angiography, and CTP. Ground truth perfusion maps (rCBF and Tmax) were extracted from VIZ.ai post-processed CTP studies. A modified pix2pix-turbo generative adversarial network (GAN) was developed to translate co-registered NCHCT images into corresponding perfusion maps. The network was trained using paired NCHCT-CTP data, with training, validation, and testing splits of 80%:10%:10%. Performance was assessed on the test set using quantitative metrics including the structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and Fréchet inception distance (FID). Out of 120 patients, studies from 99 patients fitting our inclusion and exclusion criteria were used as the primary cohort (mean age 73.3 ± 13.5 years; 46.5% female). Cerebral occlusions were predominantly in the middle cerebral artery. GAN-generated Tmax maps achieved an SSIM of 0.827, PSNR of 16.99, and FID of 62.21, while the rCBF maps demonstrated comparable performance (SSIM 0.79, PSNR 16.38, FID 59.58). These results indicate that the model approximates ground truth perfusion maps to a moderate degree and successfully captures key cerebral hemodynamic features. Our findings demonstrate the feasibility of generating functional perfusion maps directly from widely available NCHCT images using a modified GAN. This cross-modality approach may serve as a valuable adjunct in AIS evaluation, particularly in resource-limited settings or when traditional CTP provides limited diagnostic information. Future studies with larger, multicenter datasets and further model refinements are warranted to enhance clinical accuracy and utility.

Deep learning and radiomics fusion for predicting the invasiveness of lung adenocarcinoma within ground glass nodules.

Sun Q, Yu L, Song Z, Wang C, Li W, Chen W, Xu J, Han S

pubmed logopapersAug 11 2025
Microinvasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) require distinct treatment strategies and are associated with different prognoses, underscoring the importance of accurate differentiation. This study aims to develop a predictive model that combines radiomics and deep learning to effectively distinguish between MIA and IAC. In this retrospective study, 252 pathologically confirmed cases of ground-glass nodules (GGNs) were included, with 177 allocated to the training set and 75 to the testing set. Radiomics, 2D deep learning, and 3D deep learning models were constructed based on CT images. In addition, two fusion strategies were employed to integrate these modalities: early fusion, which concatenates features from all modalities prior to classification, and late fusion, which ensembles the output probabilities of the individual models. The predictive performance of all five models was evaluated using the area under the receiver operating characteristic curve (AUC), and DeLong's test was performed to compare differences in AUC between models. The radiomics model achieved an AUC of 0.794 (95% CI: 0.684-0.898), while the 2D and 3D deep learning models achieved AUCs of 0.754 (95% CI: 0.594-0.882) and 0.847 (95% CI: 0.724-0.945), respectively, in the testing set. Among the fusion models, the late fusion strategy demonstrated the highest predictive performance, with an AUC of 0.898 (95% CI: 0.784-0.962), outperforming the early fusion model, which achieved an AUC of 0.857 (95% CI: 0.731-0.936). Although the differences were not statistically significant, the late fusion model yielded the highest numerical values for diagnostic accuracy, sensitivity, and specificity across all models. The fusion of radiomics and deep learning features shows potential in improving the differentiation of MIA and IAC in GGNs. The late fusion strategy demonstrated promising results, warranting further validation in larger, multicenter studies.

Enhanced Liver Tumor Detection in CT Images Using 3D U-Net and Bat Algorithm for Hyperparameter Optimization

Nastaran Ghorbani, Bitasadat Jamshidi, Mohsen Rostamy-Malkhalifeh

arxiv logopreprintAug 11 2025
Liver cancer is one of the most prevalent and lethal forms of cancer, making early detection crucial for effective treatment. This paper introduces a novel approach for automated liver tumor segmentation in computed tomography (CT) images by integrating a 3D U-Net architecture with the Bat Algorithm for hyperparameter optimization. The method enhances segmentation accuracy and robustness by intelligently optimizing key parameters like the learning rate and batch size. Evaluated on a publicly available dataset, our model demonstrates a strong ability to balance precision and recall, with a high F1-score at lower prediction thresholds. This is particularly valuable for clinical diagnostics, where ensuring no potential tumors are missed is paramount. Our work contributes to the field of medical image analysis by demonstrating that the synergy between a robust deep learning architecture and a metaheuristic optimization algorithm can yield a highly effective solution for complex segmentation tasks.

Automated Prediction of Bone Volume Removed in Mastoidectomy.

Nagururu NV, Ishida H, Ding AS, Ishii M, Unberath M, Taylor RH, Munawar A, Sahu M, Creighton FX

pubmed logopapersAug 11 2025
The bone volume drilled by surgeons during mastoidectomy is determined by the need to localize the position, optimize the view, and reach the surgical endpoint while avoiding critical structures. Predicting the volume of bone removed before an operation can significantly enhance surgical training by providing precise, patient-specific guidance and enable the development of more effective computer-assisted and robotic surgical interventions. Single institution, cross-sectional. VR simulation. We developed a deep learning pipeline to automate the prediction of bone volume removed during mastoidectomy using data from virtual reality mastoidectomy simulations. The data set included 15 deidentified temporal bone computed tomography scans. The network was evaluated using fivefold cross-validation, comparing predicted and actual bone removal with metrics such as the Dice score (DSC) and Hausdorff distance (HD). Our method achieved a median DSC of 0.775 (interquartile range [IQR]: 0.725-0.810) and a median HD of 0.492 mm (IQR: 0.298-0.757 mm). Predictions reached the mastoidectomy endpoint of visualizing the horizontal canal and incus in 80% (12/15) of temporal bones. Qualitative analysis indicated that predictions typically produced realistic mastoidectomy endpoints, though some cases showed excessive or insufficient bone removal, particularly at the temporal bone cortex and tegmen mastoideum. This study establishes a foundational step in using deep learning to predict bone volume removal during mastoidectomy. The results indicate that learning-based methods can reasonably approximate the surgical endpoint of mastoidectomy. Further refinement with larger, more diverse data sets and improved model architectures will be essential for enhancing prediction accuracy.

Artificial Intelligence-Driven Body Composition Analysis Enhances Chemotherapy Toxicity Prediction in Colorectal Cancer.

Liu YZ, Su PF, Tai AS, Shen MR, Tsai YS

pubmed logopapersAug 11 2025
Body surface area (BSA)-based chemotherapy dosing remains standard despite its limitations in predicting toxicity. Variations in body composition, particularly skeletal muscle and adipose tissue, influence drug metabolism and toxicity risk. This study aims to investigate the mediating role of body composition in the relationship between BSA-based dosing and dose-limiting toxicities (DLTs) in colorectal cancer patients receiving oxaliplatin-based chemotherapy. We retrospectively analyzed 483 stage III colorectal cancer patients treated at National Cheng Kung University Hospital (2013-2021). An artificial intelligence (AI)-driven algorithm quantified skeletal muscle and adipose tissue compartments from lumbar 3 (L3) vertebral-level computed tomography (CT) scans. Mediation analysis evaluated body composition's role in chemotherapy-related toxicities. Among the cohort, 18.2% (n = 88) experienced DLTs. While BSA alone was not significantly associated with DLTs (OR = 0.473, p = 0.376), increased intramuscular adipose tissue (IMAT) significantly predicted higher DLT risk (OR = 1.047, p = 0.038), whereas skeletal muscle area was protective. Mediation analysis confirmed that IMAT partially mediated the relationship between BSA and DLTs (indirect effect: 0.05, p = 0.040), highlighting adipose infiltration's role in chemotherapy toxicity. BSA-based dosing inadequately accounts for interindividual variations in chemotherapy tolerance. AI-assisted body composition analysis provides a precision oncology framework for identifying high-risk patients and optimizing chemotherapy regimens. Prospective validation is warranted to integrate body composition into routine clinical decision-making.

Machine learning models for the prediction of preclinical coal workers' pneumoconiosis: integrating CT radiomics and occupational health surveillance records.

Ma Y, Cui F, Yao Y, Shen F, Qin H, Li B, Wang Y

pubmed logopapersAug 11 2025
This study aims to integrate CT imaging with occupational health surveillance data to construct a multimodal model for preclinical CWP identification and individualized risk evaluation. CT images and occupational health surveillance data were retrospectively collected from 874 coal workers, including 228 Stage I and 4 Stage II pneumoconiosis patients, along with 600 healthy and 42 subcategory 0/1 coal workers. First, the YOLOX was employed for automated 3D lung extraction to extract radiomics features. Second, two feature selection algorithms were applied to select critical features from both CT radiomics and occupational health data. Third, three distinct feature sets were constructed for model training: CT radiomics features, occupational health data, and their multimodal integration. Finally, five machine learning models were implemented to predict the preclinical stage of CWP. The model's performance was evaluated using the receiver operating characteristic curve (ROC), accuracy, sensitivity, and specificity. SHapley Additive exPlanation (SHAP) values were calculated to determine the prediction role of each feature in the model with the highest predictive performance. The YOLOX-based lung extraction demonstrated robust performance, achieving an Average Precision (AP) of 0.98. 8 CT radiomic features and 4 occupational health surveillance data were selected for the multimodal model. The optimal occupational health surveillance feature subset comprised the Length of service. Among 5 machine learning algorithms evaluated, the Decision Tree-based multimodal model showed superior predictive capacity on the test set of 142 samples, with an AUC of 0.94 (95% CI 0.88-0.99), accuracy 0.95, specificity 1.00, and Youden's index 0.83. SHAP analysis indicated that Total Protein Results, original shape Flatness, diagnostics Image original Mean were the most influential contributors. Our study demonstrated that the multimodal model demonstrated strong predictive capability for the preclinical stage of CWP by integrating CT radiomic features with occupational health data.

Prediction of hematoma changes in spontaneous intracerebral hemorrhage using a Transformer-based generative adversarial network to generate follow-up CT images.

Feng C, Jiang C, Hu C, Kong S, Ye Z, Han J, Zhong K, Yang T, Yin H, Lao Q, Ding Z, Shen D, Shen Q

pubmed logopapersAug 10 2025
To visualize and assess hematoma growth trends by generating follow-up CT images within 24 h based on baseline CT images of spontaneous intracerebral hemorrhage (sICH) using Transformer-integrated Generative Adversarial Networks (GAN). Patients with sICH were retrospectively recruited from two medical centers. The imaging data included baseline non-contrast CT scans taken after onset and follow-up imaging within 24 h. In the test set, the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) were utilized to quantitatively assess the quality of the predicted images. Pearson's correlation analysis was performed to assess the agreement of semantic features and geometric properties of hematomas between true follow-up CT images and the predicted images. The consistency of hematoma expansion prediction between true and generated images was further examined. The PSNR of the predicted images was 26.73 ± 1.11, and the SSIM was 91.23 ± 1.10. The Pearson correlation coefficients (r) with 95 % confidence intervals (CI) for irregularity, satellite sign number, intraventricular or subarachnoid hemorrhage, midline shift, edema expansion, mean CT value, maximum cross-sectional area, and hematoma volume between the predicted and true follow-up images were as follows: 0.94 (0.91, 0.96), 0.87 (0.81, 0.91), 0.86 (0.80, 0.91), 0.89 (0.84, 0.92), 0.91 (0.87, 0.94), 0.78(0.68, 0.84), 0.94(0.91, 0.96), and 0.94 (0.91, 0.96), respectively. The correlation coefficient (r) for predicting hematoma expansion between predicted and true follow-up images was 0.86 (95 % CI: 0.79, 0.90; P < 0.001). The model constructed using a GAN integrated with Transformer modules can accurately visualize early hematoma changes in sICH.

Dendrite cross attention for high-dose-rate brachytherapy distribution planning.

Saini S, Liu X

pubmed logopapersAug 10 2025
Cervical cancer is a significant global health issue, and high-dose-rate brachytherapy (HDR-BT) is crucial for its treatment. However, manually creating HDR-BT plans is time-consuming and heavily relies on the planner's expertise, making standardization difficult. This study introduces two advanced deep learning models to address this need: Bi-branch Cross-Attention UNet (BiCA-UNet) and Dendrite Cross-Attention UNet (DCA-UNet). BiCA-UNet enhances the correlation between the CT scan and segmentation maps of the clinical target volume (CTV), applicator, bladder, and rectum. It uses two branches: one processes the stacked input of CT scans and segmentations, and the other focuses on the CTV segmentation. A cross-attention mechanism integrates these branches, improving the model's understanding of the CTV region for accurate dose predictions. Building on BiCA-UNet, DCA-UNet further introduces a primary branch of stacked inputs and three secondary branches for CTV, bladder, and rectum segmentations forming a dendritic structure. Cross attention with bladder and rectum segmentation helps the model understand the regions of organs at risk (OAR), refining dose prediction. Evaluation of these models using multiple metrics indicates that both BiCA-UNet and DCA-UNet significantly improve HDR-BT dose prediction accuracy for various applicator types. The cross-attention mechanisms enhance the feature representation of critical anatomical regions, leading to precise and reliable treatment plans. This research highlights the potential of BiCA-UNet and DCA-UNet in advancing HDR-BT planning, contributing to the standardization of treatment plans, and offering promising directions for future research to improve patient outcomes in the source data.

Stenosis degree and plaque burden differ between the major epicardial coronary arteries supplying ischemic territories.

Kero T, Knuuti J, Bär S, Bax JJ, Saraste A, Maaniitty T

pubmed logopapersAug 9 2025
It is unclear whether coronary artery stenosis, plaque burden, and composition differ between major epicardial arteries supplying ischemic myocardial territories. We studied 837 symptomatic patients undergoing coronary computed tomography angiography (CTA) and <sup>15</sup>O-water PET myocardial perfusion imaging for suspected obstructive coronary artery disease. Coronary CTA was analyzed using Artificial Intelligence-Guided Quantitative Computed Tomography (AI-QCT) to assess stenosis and atherosclerotic plaque characteristics. Myocardial ischemia was defined by regional PET perfusion in the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) territories. Among arteries supplying ischemic territories, the LAD exhibited significantly higher stenosis and both absolute and normalized plaque volumes compared to LCX and RCA (p<0.001 for all). Multivariable logistic regression showed diameter stenosis (p=0.001-0.015), percent atheroma volume (PAV; p<0.001), and percent non-calcified plaque volume (p=0.001-0.017) were associated with ischemia across all three arteries. Percent calcified plaque volume was associated with ischemia only in the RCA (p=0.001). The degree of stenosis and atherosclerotic burden are significantly higher in LAD as compared to LCX and RCA, both in epicardial coronary arteries supplying non-ischemic or ischemic myocardial territories. In all the three main coronary arteries both luminal narrowing and plaque burden are independent predictors of ischemia, where the plaque burden is mainly driven by non-calcified plaque. However, many vessels supplying ischemic territories have relatively low stenosis degree and plaque burden, especially in the LCx and RCA, limiting the ability of diameter stenosis and PAV to predict myocardial ischemia.

"AI tumor delineation for all breathing phases in early-stage NSCLC".

DelaO-Arevalo LR, Sijtsema NM, van Dijk LV, Langendijk JA, Wijsman R, van Ooijen PMA

pubmed logopapersAug 9 2025
Accurate delineation of the Gross Tumor Volume (GTV) and the Internal Target Volume (ITV) in early-stage lung tumors is crucial in Stereotactic Body Radiation Therapy (SBRT). Traditionally, the ITVs, which account for breathing motion, are generated by manually contouring GTVs across all breathing phases (BPs), a time-consuming process. This research aims to streamline this workflow by developing a deep learning algorithm to automatically delineate GTVs in all four-dimensional computed tomography (4D-CT) BPs for early-stage Non-Small Cell Lung Cancer Patients (NSCLC). A dataset of 214 early-stage NSCLC patients treated with SBRT was used. Each patient had a 4D-CT scan containing ten reconstructed BPs. The data were divided into a training set (75 %) and a testing set (25 %). Three models SwinUNetR and Dynamic UNet (DynUnet), and a hybrid model combining both (Swin + Dyn)were trained and evaluated using the Dice Similarity Coefficient (DSC), 3 mm Surface Dice Similarity Coefficient (SDSC), and the 95<sup>th</sup> percentile Hausdorff distance (HD95). The best performing model was used to delineate GTVs in all test set BPs, creating the ITVs using two methods: all 10 phases and the maximum inspiration/expiration phases. The ITVs were compared to the ground truth ITVs. The Swin + Dyn model achieved the highest performance, with a test set SDSC of 0.79 ± 0.14 for GTV 50 %. For the ITVs, the SDSC was 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs. At the voxel level, the Swin + DynNet network achieved a sensitivity of 0.75 ± 0.14 and precision of 0.84 ± 0.10 for the ITV 2 breathing phases, and a sensitivity of 0.79 ± 0.12 and precision of 0.80 ± 0.11 for the 10 breathing phases. The Swin + Dyn Net algorithm, trained on the maximum expiration CT-scan effectively delineated gross tumor volumes in all breathing phases and the resulting ITV showed a good agreement with the ground truth (surface DSC = 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs.). The proposed approach could reduce delineation time and inter-performer variability in the tumor contouring process for NSCLC SBRT workflows.
Page 44 of 1411410 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.