"AI tumor delineation for all breathing phases in early-stage NSCLC".

Authors

DelaO-Arevalo LR,Sijtsema NM,van Dijk LV,Langendijk JA,Wijsman R,van Ooijen PMA

Affiliations (2)

  • Radiation Oncology, University Medical Center Groningen (UMCG), Groningen, the Netherlands. Electronic address: [email protected].
  • Radiation Oncology, University Medical Center Groningen (UMCG), Groningen, the Netherlands.

Abstract

Accurate delineation of the Gross Tumor Volume (GTV) and the Internal Target Volume (ITV) in early-stage lung tumors is crucial in Stereotactic Body Radiation Therapy (SBRT). Traditionally, the ITVs, which account for breathing motion, are generated by manually contouring GTVs across all breathing phases (BPs), a time-consuming process. This research aims to streamline this workflow by developing a deep learning algorithm to automatically delineate GTVs in all four-dimensional computed tomography (4D-CT) BPs for early-stage Non-Small Cell Lung Cancer Patients (NSCLC). A dataset of 214 early-stage NSCLC patients treated with SBRT was used. Each patient had a 4D-CT scan containing ten reconstructed BPs. The data were divided into a training set (75 %) and a testing set (25 %). Three models SwinUNetR and Dynamic UNet (DynUnet), and a hybrid model combining both (Swin + Dyn)were trained and evaluated using the Dice Similarity Coefficient (DSC), 3 mm Surface Dice Similarity Coefficient (SDSC), and the 95<sup>th</sup> percentile Hausdorff distance (HD95). The best performing model was used to delineate GTVs in all test set BPs, creating the ITVs using two methods: all 10 phases and the maximum inspiration/expiration phases. The ITVs were compared to the ground truth ITVs. The Swin + Dyn model achieved the highest performance, with a test set SDSC of 0.79 ± 0.14 for GTV 50 %. For the ITVs, the SDSC was 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs. At the voxel level, the Swin + DynNet network achieved a sensitivity of 0.75 ± 0.14 and precision of 0.84 ± 0.10 for the ITV 2 breathing phases, and a sensitivity of 0.79 ± 0.12 and precision of 0.80 ± 0.11 for the 10 breathing phases. The Swin + Dyn Net algorithm, trained on the maximum expiration CT-scan effectively delineated gross tumor volumes in all breathing phases and the resulting ITV showed a good agreement with the ground truth (surface DSC = 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs.). The proposed approach could reduce delineation time and inter-performer variability in the tumor contouring process for NSCLC SBRT workflows.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.