"AI tumor delineation for all breathing phases in early-stage NSCLC".
Authors
Affiliations (2)
Affiliations (2)
- Radiation Oncology, University Medical Center Groningen (UMCG), Groningen, the Netherlands. Electronic address: [email protected].
- Radiation Oncology, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
Abstract
Accurate delineation of the Gross Tumor Volume (GTV) and the Internal Target Volume (ITV) in early-stage lung tumors is crucial in Stereotactic Body Radiation Therapy (SBRT). Traditionally, the ITVs, which account for breathing motion, are generated by manually contouring GTVs across all breathing phases (BPs), a time-consuming process. This research aims to streamline this workflow by developing a deep learning algorithm to automatically delineate GTVs in all four-dimensional computed tomography (4D-CT) BPs for early-stage Non-Small Cell Lung Cancer Patients (NSCLC). A dataset of 214 early-stage NSCLC patients treated with SBRT was used. Each patient had a 4D-CT scan containing ten reconstructed BPs. The data were divided into a training set (75 %) and a testing set (25 %). Three models SwinUNetR and Dynamic UNet (DynUnet), and a hybrid model combining both (Swin + Dyn)were trained and evaluated using the Dice Similarity Coefficient (DSC), 3 mm Surface Dice Similarity Coefficient (SDSC), and the 95<sup>th</sup> percentile Hausdorff distance (HD95). The best performing model was used to delineate GTVs in all test set BPs, creating the ITVs using two methods: all 10 phases and the maximum inspiration/expiration phases. The ITVs were compared to the ground truth ITVs. The Swin + Dyn model achieved the highest performance, with a test set SDSC of 0.79 ± 0.14 for GTV 50 %. For the ITVs, the SDSC was 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs. At the voxel level, the Swin + DynNet network achieved a sensitivity of 0.75 ± 0.14 and precision of 0.84 ± 0.10 for the ITV 2 breathing phases, and a sensitivity of 0.79 ± 0.12 and precision of 0.80 ± 0.11 for the 10 breathing phases. The Swin + Dyn Net algorithm, trained on the maximum expiration CT-scan effectively delineated gross tumor volumes in all breathing phases and the resulting ITV showed a good agreement with the ground truth (surface DSC = 0.79 ± 0.16 using all 10 BPs and 0.77 ± 0.14 using 2 BPs.). The proposed approach could reduce delineation time and inter-performer variability in the tumor contouring process for NSCLC SBRT workflows.