Automated Prediction of Bone Volume Removed in Mastoidectomy.
Authors
Affiliations (2)
Affiliations (2)
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA.
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA.
Abstract
The bone volume drilled by surgeons during mastoidectomy is determined by the need to localize the position, optimize the view, and reach the surgical endpoint while avoiding critical structures. Predicting the volume of bone removed before an operation can significantly enhance surgical training by providing precise, patient-specific guidance and enable the development of more effective computer-assisted and robotic surgical interventions. Single institution, cross-sectional. VR simulation. We developed a deep learning pipeline to automate the prediction of bone volume removed during mastoidectomy using data from virtual reality mastoidectomy simulations. The data set included 15 deidentified temporal bone computed tomography scans. The network was evaluated using fivefold cross-validation, comparing predicted and actual bone removal with metrics such as the Dice score (DSC) and Hausdorff distance (HD). Our method achieved a median DSC of 0.775 (interquartile range [IQR]: 0.725-0.810) and a median HD of 0.492 mm (IQR: 0.298-0.757 mm). Predictions reached the mastoidectomy endpoint of visualizing the horizontal canal and incus in 80% (12/15) of temporal bones. Qualitative analysis indicated that predictions typically produced realistic mastoidectomy endpoints, though some cases showed excessive or insufficient bone removal, particularly at the temporal bone cortex and tegmen mastoideum. This study establishes a foundational step in using deep learning to predict bone volume removal during mastoidectomy. The results indicate that learning-based methods can reasonably approximate the surgical endpoint of mastoidectomy. Further refinement with larger, more diverse data sets and improved model architectures will be essential for enhancing prediction accuracy.