Sort by:
Page 424 of 4494481 results

Application of artificial intelligence medical imaging aided diagnosis system in the diagnosis of pulmonary nodules.

Yang Y, Wang P, Yu C, Zhu J, Sheng J

pubmed logopapersMay 14 2025
The application of artificial intelligence (AI) technology has realized the transformation of people's production and lifestyle, and also promoted the rapid development of the medical field. At present, the application of intelligence in the medical field is increasing. Using its advanced methods and technologies of AI, this paper aims to realize the integration of medical imaging-aided diagnosis system and AI, which is helpful to analyze and solve the loopholes and errors of traditional artificial diagnosis in the diagnosis of pulmonary nodules. Drawing on the principles and rules of image segmentation methods, the construction and optimization of a medical image-aided diagnosis system is carried out to realize the precision of the diagnosis system in the diagnosis of pulmonary nodules. In the diagnosis of pulmonary nodules carried out by traditional artificial and medical imaging-assisted diagnosis systems, 231 nodules with pathology or no change in follow-up for more than two years were also tested in 200 cases. The results showed that the AI software detected a total of 881 true nodules with a sensitivity of 99.10% (881/889). The radiologists detected 385 true nodules with a sensitivity of 43.31% (385/889). The sensitivity of AI software in detecting non-calcified nodules was significantly higher than that of radiologists (99.01% vs 43.30%, P < 0.001), and the difference was statistically significant.

Optimizing breast lesions diagnosis and decision-making with a deep learning fusion model integrating ultrasound and mammography: a dual-center retrospective study.

Xu Z, Zhong S, Gao Y, Huo J, Xu W, Huang W, Huang X, Zhang C, Zhou J, Dan Q, Li L, Jiang Z, Lang T, Xu S, Lu J, Wen G, Zhang Y, Li Y

pubmed logopapersMay 14 2025
This study aimed to develop a BI-RADS network (DL-UM) via integrating ultrasound (US) and mammography (MG) images and explore its performance in improving breast lesion diagnosis and management when collaborating with radiologists, particularly in cases with discordant US and MG Breast Imaging Reporting and Data System (BI-RADS) classifications. We retrospectively collected image data from 1283 women with breast lesions who underwent both US and MG within one month at two medical centres and categorised them into concordant and discordant BI-RADS classification subgroups. We developed a DL-UM network via integrating US and MG images, and DL networks using US (DL-U) or MG (DL-M) alone, respectively. The performance of DL-UM network for breast lesion diagnosis was evaluated using ROC curves and compared to DL-U and DL-M networks in the external testing dataset. The diagnostic performance of radiologists with different levels of experience under the assistance of DL-UM network was also evaluated. In the external testing dataset, DL-UM outperformed DL-M in sensitivity (0.962 vs. 0.833, P = 0.016) and DL-U in specificity (0.667 vs. 0.526, P = 0.030), respectively. In the discordant BI-RADS classification subgroup, DL-UM achieved an AUC of 0.910. The diagnostic performance of four radiologists improved when collaborating with the DL-UM network, with AUCs increased from 0.674-0.772 to 0.889-0.910, specificities from 52.1%-75.0 to 81.3-87.5% and reducing unnecessary biopsies by 16.1%-24.6%, particularly for junior radiologists. Meanwhile, DL-UM outputs and heatmaps enhanced radiologists' trust and improved interobserver agreement between US and MG, with weighted kappa increased from 0.048 to 0.713 (P < 0.05). The DL-UM network, integrating complementary US and MG features, assisted radiologists in improving breast lesion diagnosis and management, potentially reducing unnecessary biopsies.

Early detection of Alzheimer's disease progression stages using hybrid of CNN and transformer encoder models.

Almalki H, Khadidos AO, Alhebaishi N, Senan EM

pubmed logopapersMay 14 2025
Alzheimer's disease (AD) is a neurodegenerative disorder that affects memory and cognitive functions. Manual diagnosis is prone to human error, often leading to misdiagnosis or delayed detection. MRI techniques help visualize the fine tissues of the brain cells, indicating the stage of disease progression. Artificial intelligence techniques analyze MRI with high accuracy and extract subtle features that are difficult to diagnose manually. In this study, a modern methodology was designed that combines the power of CNN models (ResNet101 and GoogLeNet) to extract local deep features and the power of Vision Transformer (ViT) models to extract global features and find relationships between image spots. First, the MRI images of the Open Access Imaging Studies Series (OASIS) dataset were improved by two filters: the adaptive median filter (AMF) and Laplacian filter. The ResNet101 and GoogLeNet models were modified to suit the feature extraction task and reduce computational cost. The ViT architecture was modified to reduce the computational cost while increasing the number of attention vertices to further discover global features and relationships between image patches. The enhanced images were fed into the proposed ViT-CNN methodology. The enhanced images were fed to the modified ResNet101 and GoogLeNet models to extract the deep feature maps with high accuracy. Deep feature maps were fed into the modified ViT model. The deep feature maps were partitioned into 32 feature maps using ResNet101 and 16 feature maps using GoogLeNet, both with a size of 64 features. The feature maps were encoded to recognize the spatial arrangement of the patch and preserve the relationship between patches, helping the self-attention layers distinguish between patches based on their positions. They were fed to the transformer encoder, which consisted of six blocks and multiple vertices to focus on different patterns or regions simultaneously. Finally, the MLP classification layers classify each image into one of four dataset classes. The improved ResNet101-ViT hybrid methodology outperformed the GoogLeNet-ViT hybrid methodology. ResNet101-ViT achieved 98.7% accuracy, 95.05% AUC, 96.45% precision, 99.68% sensitivity, and 97.78% specificity.

Whole-body CT-to-PET synthesis using a customized transformer-enhanced GAN.

Xu B, Nie Z, He J, Li A, Wu T

pubmed logopapersMay 14 2025
Positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography (18F-FDG PET-CT) is a multi-modality medical imaging technique widely used for screening and diagnosis of lesions and tumors, in which, CT can provide detailed anatomical structures, while PET can show metabolic activities. Nevertheless, it has disadvantages such as long scanning time, high cost, and relatively high radiation doses.&#xD;&#xD;Purpose: We propose a deep learning model for the whole-body CT-to-PET synthesis task, generating high-quality synthetic PET images that are comparable to real ones in both clinical relevance and diagnostic value.&#xD;&#xD;Material: We collect 102 pairs of 3D CT and PET scans, which are sliced into 27,240 pairs of 2D CT and PET images ( training: 21,855 pairs, validation: 2,810, testing: 2,575 pairs).&#xD;&#xD;Methods: We propose a Transformer-enhanced Generative Adversarial Network (GAN) for whole-body CT-to-PET synthesis task. The CPGAN model uses residual blocks and Fully Connected Transformer Residual (FCTR) blocks to capture both local features and global contextual information. A customized loss function incorporating structural consistency is designed to improve the quality of synthesized PET images.&#xD;&#xD;Results: Both quantitative and qualitative evaluation results demonstrate effectiveness of the CPGAN model. The mean and standard variance of NRMSE,PSNR and SSIM values on test set are (16.90 ± 12.27) × 10-4, 28.71 ± 2.67 and 0.926 ± 0.033, respectively, outperforming other seven state-of-the-art models. Three radiologists independently and blindly evaluated and gave subjective scores to 100 randomly chosen PET images (50 real and 50 synthetic). By Wilcoxon signed rank test, there are no statistical differences between the synthetic PET images and the real ones.&#xD;&#xD;Conclusions: Despite the inherent limitations of CT images to directly reflect biological information of metabolic tissues, CPGAN model effectively synthesizes satisfying PET images from CT scans, which has potential in reducing the reliance on actual PET-CT scans.

CT-based AI framework leveraging multi-scale features for predicting pathological grade and Ki67 index in clear cell renal cell carcinoma: a multicenter study.

Yang H, Zhang Y, Li F, Liu W, Zeng H, Yuan H, Ye Z, Huang Z, Yuan Y, Xiang Y, Wu K, Liu H

pubmed logopapersMay 14 2025
To explore whether a CT-based AI framework, leveraging multi-scale features, can offer a non-invasive approach to accurately predict pathological grade and Ki67 index in clear cell renal cell carcinoma (ccRCC). In this multicenter retrospective study, a total of 1073 pathologically confirmed ccRCC patients from seven cohorts were split into internal cohorts (training and validation sets) and an external test set. The AI framework comprised an image processor, a 3D-kidney and tumor segmentation model by 3D-UNet, a multi-scale features extractor built upon unsupervised learning, and a multi-task classifier utilizing XGBoost. A quantitative model interpretation technique, known as SHapley Additive exPlanations (SHAP), was employed to explore the contribution of multi-scale features. The 3D-UNet model showed excellent performance in segmenting both the kidney and tumor regions, with Dice coefficients exceeding 0.92. The proposed multi-scale features model exhibited strong predictive capability for pathological grading and Ki67 index, with AUROC values of 0.84 and 0.87, respectively, in the internal validation set, and 0.82 and 0.82, respectively, in the external test set. The SHAP results demonstrated that features from radiomics, the 3D Auto-Encoder, and dimensionality reduction all made significant contributions to both prediction tasks. The proposed AI framework, leveraging multi-scale features, accurately predicts the pathological grade and Ki67 index of ccRCC. The CT-based AI framework leveraging multi-scale features offers a promising avenue for accurately predicting the pathological grade and Ki67 index of ccRCC preoperatively, indicating a direction for non-invasive assessment. Non-invasively determining pathological grade and Ki67 index in ccRCC could guide treatment decisions. The AI framework integrates segmentation, classification, and model interpretation, enabling fully automated analysis. The AI framework enables non-invasive preoperative detection of high-risk tumors, assisting clinical decision-making.

Using Foundation Models as Pseudo-Label Generators for Pre-Clinical 4D Cardiac CT Segmentation

Anne-Marie Rickmann, Stephanie L. Thorn, Shawn S. Ahn, Supum Lee, Selen Uman, Taras Lysyy, Rachel Burns, Nicole Guerrera, Francis G. Spinale, Jason A. Burdick, Albert J. Sinusas, James S. Duncan

arxiv logopreprintMay 14 2025
Cardiac image segmentation is an important step in many cardiac image analysis and modeling tasks such as motion tracking or simulations of cardiac mechanics. While deep learning has greatly advanced segmentation in clinical settings, there is limited work on pre-clinical imaging, notably in porcine models, which are often used due to their anatomical and physiological similarity to humans. However, differences between species create a domain shift that complicates direct model transfer from human to pig data. Recently, foundation models trained on large human datasets have shown promise for robust medical image segmentation; yet their applicability to porcine data remains largely unexplored. In this work, we investigate whether foundation models can generate sufficiently accurate pseudo-labels for pig cardiac CT and propose a simple self-training approach to iteratively refine these labels. Our method requires no manually annotated pig data, relying instead on iterative updates to improve segmentation quality. We demonstrate that this self-training process not only enhances segmentation accuracy but also smooths out temporal inconsistencies across consecutive frames. Although our results are encouraging, there remains room for improvement, for example by incorporating more sophisticated self-training strategies and by exploring additional foundation models and other cardiac imaging technologies.

An Annotated Multi-Site and Multi-Contrast Magnetic Resonance Imaging Dataset for the study of the Human Tongue Musculature.

Ribeiro FL, Zhu X, Ye X, Tu S, Ngo ST, Henderson RD, Steyn FJ, Kiernan MC, Barth M, Bollmann S, Shaw TB

pubmed logopapersMay 14 2025
This dataset provides the first annotated, openly available MRI-based imaging dataset for investigations of tongue musculature, including multi-contrast and multi-site MRI data from non-disease participants. The present dataset includes 47 participants collated from three studies: BeLong (four participants; T2-weighted images), EATT4MND (19 participants; T2-weighted images), and BMC (24 participants; T1-weighted images). We provide manually corrected segmentations of five key tongue muscles: the superior longitudinal, combined transverse/vertical, genioglossus, and inferior longitudinal muscles. Other phenotypic measures, including age, sex, weight, height, and tongue muscle volume, are also available for use. This dataset will benefit researchers across domains interested in the structure and function of the tongue in health and disease. For instance, researchers can use this data to train new machine learning models for tongue segmentation, which can be leveraged for segmentation and tracking of different tongue muscles engaged in speech formation in health and disease. Altogether, this dataset provides the means to the scientific community for investigation of the intricate tongue musculature and its role in physiological processes and speech production.

Predicting response to anti-VEGF therapy in neovascular age-related macular degeneration using random forest and SHAP algorithms.

Zhang P, Duan J, Wang C, Li X, Su J, Shang Q

pubmed logopapersMay 14 2025
This study aimed to establish and validate a prediction model based on machine learning methods and SHAP algorithm to predict response to anti-vascular endothelial growth factor (VEGF) therapy in neovascular age-related macular degeneration (AMD). In this retrospective study, we extracted data including demographic characteristics, laboratory test results, and imaging features from optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Eight machine learning methods, including Logistic Regression, Gradient Boosting Decision Tree, Random Forest, CatBoost, Support Vector Machine, XGboost, LightGBM, K Nearest Neighbors were employed to develop the predictive model. The machine learning method with optimal performance was selected for further interpretation. Finally, the SHAP algorithm was applied to explain the model's predictions. The study included 145 patients with neovascular AMD. Among the eight models developed, the Random Forest model demonstrated general optimal performance, achieving a high accuracy of 75.86% and the highest area under the receiver operating characteristic curve (AUC) value of 0.91. In this model, important features identified as significant contributors to the response to anti-VEGF therapy in neovascular AMD patients included fractal dimension, total number of end points, total number of junctions, total vessels length, vessels area, average lacunarity, choroidal neovascularization (CNV) type, age, duration and logMAR BCVA. SHAP analysis and visualization provided interpretation at both the factor level and individual level. The Random Forest model for predicting response to anti-VEGF therapy in neovascular AMD using SHAP algorithm proved to be feasible and effective. OCTA imaging features, such as fractal dimension, total number of end points et al, were the most effective predictive factors.

Deep learning for cerebral vascular occlusion segmentation: A novel ConvNeXtV2 and GRN-integrated U-Net framework for diffusion-weighted imaging.

Ince S, Kunduracioglu I, Algarni A, Bayram B, Pacal I

pubmed logopapersMay 14 2025
Cerebral vascular occlusion is a serious condition that can lead to stroke and permanent neurological damage due to insufficient oxygen and nutrients reaching brain tissue. Early diagnosis and accurate segmentation are critical for effective treatment planning. Due to its high soft tissue contrast, Magnetic Resonance Imaging (MRI) is commonly used for detecting these occlusions such as ischemic stroke. However, challenges such as low contrast, noise, and heterogeneous lesion structures in MRI images complicate manual segmentation and often lead to misinterpretations. As a result, deep learning-based Computer-Aided Diagnosis (CAD) systems are essential for faster and more accurate diagnosis and treatment methods, although they can sometimes face challenges such as high computational costs and difficulties in segmenting small or irregular lesions. This study proposes a novel U-Net architecture enhanced with ConvNeXtV2 blocks and GRN-based Multi-Layer Perceptrons (MLP) to address these challenges in cerebral vascular occlusion segmentation. This is the first application of ConvNeXtV2 in this domain. The proposed model significantly improves segmentation accuracy, even in low-contrast regions, while maintaining high computational efficiency, which is crucial for real-world clinical applications. To reduce false positives and improve overall accuracy, small lesions (≤5 pixels) were removed in the preprocessing step with the support of expert clinicians. Experimental results on the ISLES 2022 dataset showed superior performance with an Intersection over Union (IoU) of 0.8015 and a Dice coefficient of 0.8894. Comparative analyses indicate that the proposed model achieves higher segmentation accuracy than existing U-Net variants and other methods, offering a promising solution for clinical use.

A multi-layered defense against adversarial attacks in brain tumor classification using ensemble adversarial training and feature squeezing.

Yinusa A, Faezipour M

pubmed logopapersMay 14 2025
Deep learning, particularly convolutional neural networks (CNNs), has proven valuable for brain tumor classification, aiding diagnostic and therapeutic decisions in medical imaging. Despite their accuracy, these models are vulnerable to adversarial attacks, compromising their reliability in clinical settings. In this research, we utilized a VGG16-based CNN model to classify brain tumors, achieving 96% accuracy on clean magnetic resonance imaging (MRI) data. To assess robustness, we exposed the model to Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) attacks, which reduced accuracy to 32% and 13%, respectively. We then applied a multi-layered defense strategy, including adversarial training with FGSM and PGD examples and feature squeezing techniques such as bit-depth reduction and Gaussian blurring. This approach improved model resilience, achieving 54% accuracy on FGSM and 47% on PGD adversarial examples. Our results highlight the importance of proactive defense strategies for maintaining the reliability of AI in medical imaging under adversarial conditions.
Page 424 of 4494481 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.