Predicting response to anti-VEGF therapy in neovascular age-related macular degeneration using random forest and SHAP algorithms.

Authors

Zhang P,Duan J,Wang C,Li X,Su J,Shang Q

Affiliations (2)

  • Department of Ophthalmology, The Second Hospital of Hebei Medical University.
  • Department of Ophthalmology, The Second Hospital of Hebei Medical University. Electronic address: [email protected].

Abstract

This study aimed to establish and validate a prediction model based on machine learning methods and SHAP algorithm to predict response to anti-vascular endothelial growth factor (VEGF) therapy in neovascular age-related macular degeneration (AMD). In this retrospective study, we extracted data including demographic characteristics, laboratory test results, and imaging features from optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Eight machine learning methods, including Logistic Regression, Gradient Boosting Decision Tree, Random Forest, CatBoost, Support Vector Machine, XGboost, LightGBM, K Nearest Neighbors were employed to develop the predictive model. The machine learning method with optimal performance was selected for further interpretation. Finally, the SHAP algorithm was applied to explain the model's predictions. The study included 145 patients with neovascular AMD. Among the eight models developed, the Random Forest model demonstrated general optimal performance, achieving a high accuracy of 75.86% and the highest area under the receiver operating characteristic curve (AUC) value of 0.91. In this model, important features identified as significant contributors to the response to anti-VEGF therapy in neovascular AMD patients included fractal dimension, total number of end points, total number of junctions, total vessels length, vessels area, average lacunarity, choroidal neovascularization (CNV) type, age, duration and logMAR BCVA. SHAP analysis and visualization provided interpretation at both the factor level and individual level. The Random Forest model for predicting response to anti-VEGF therapy in neovascular AMD using SHAP algorithm proved to be feasible and effective. OCTA imaging features, such as fractal dimension, total number of end points et al, were the most effective predictive factors.

Topics

Journal Article
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.