Sort by:
Page 42 of 59587 results

Angio-Diff: Learning a Self-Supervised Adversarial Diffusion Model for Angiographic Geometry Generation

Zhifeng Wang, Renjiao Yi, Xin Wen, Chenyang Zhu, Kai Xu, Kunlun He

arxiv logopreprintJun 24 2025
Vascular diseases pose a significant threat to human health, with X-ray angiography established as the gold standard for diagnosis, allowing for detailed observation of blood vessels. However, angiographic X-rays expose personnel and patients to higher radiation levels than non-angiographic X-rays, which are unwanted. Thus, modality translation from non-angiographic to angiographic X-rays is desirable. Data-driven deep approaches are hindered by the lack of paired large-scale X-ray angiography datasets. While making high-quality vascular angiography synthesis crucial, it remains challenging. We find that current medical image synthesis primarily operates at pixel level and struggles to adapt to the complex geometric structure of blood vessels, resulting in unsatisfactory quality of blood vessel image synthesis, such as disconnections or unnatural curvatures. To overcome this issue, we propose a self-supervised method via diffusion models to transform non-angiographic X-rays into angiographic X-rays, mitigating data shortages for data-driven approaches. Our model comprises a diffusion model that learns the distribution of vascular data from diffusion latent, a generator for vessel synthesis, and a mask-based adversarial module. To enhance geometric accuracy, we propose a parametric vascular model to fit the shape and distribution of blood vessels. The proposed method contributes a pipeline and a synthetic dataset for X-ray angiography. We conducted extensive comparative and ablation experiments to evaluate the Angio-Diff. The results demonstrate that our method achieves state-of-the-art performance in synthetic angiography image quality and more accurately synthesizes the geometric structure of blood vessels. The code is available at https://github.com/zfw-cv/AngioDiff.

Chest X-ray Foundation Model with Global and Local Representations Integration.

Yang Z, Xu X, Zhang J, Wang G, Kalra MK, Yan P

pubmed logopapersJun 23 2025
Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrained CheXFound on a curated CXR-987K dataset, comprising over approximately 987K unique CXRs from 12 publicly available sources. We propose a Global and Local Representations Integration (GLoRI) head for downstream adaptations, by incorporating fine- and coarse-grained disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results showed that CheXFound outperformed state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibited superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on downstream tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation, mortality prediction, malpositioned tube detection, and anatomical structure segmentation. The above results demonstrate CheXFound's strong generalization capabilities, which will enable diverse downstream adaptations with improved label efficiency in future applications. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.

Rethinking Decoder Design: Improving Biomarker Segmentation Using Depth-to-Space Restoration and Residual Linear Attention

Saad Wazir, Daeyoung Kim

arxiv logopreprintJun 23 2025
Segmenting biomarkers in medical images is crucial for various biotech applications. Despite advances, Transformer and CNN based methods often struggle with variations in staining and morphology, limiting feature extraction. In medical image segmentation, where datasets often have limited sample availability, recent state-of-the-art (SOTA) methods achieve higher accuracy by leveraging pre-trained encoders, whereas end-to-end methods tend to underperform. This is due to challenges in effectively transferring rich multiscale features from encoders to decoders, as well as limitations in decoder efficiency. To address these issues, we propose an architecture that captures multi-scale local and global contextual information and a novel decoder design, which effectively integrates features from the encoder, emphasizes important channels and regions, and reconstructs spatial dimensions to enhance segmentation accuracy. Our method, compatible with various encoders, outperforms SOTA methods, as demonstrated by experiments on four datasets and ablation studies. Specifically, our method achieves absolute performance gains of 2.76% on MoNuSeg, 3.12% on DSB, 2.87% on Electron Microscopy, and 4.03% on TNBC datasets compared to existing SOTA methods. Code: https://github.com/saadwazir/MCADS-Decoder

SafeClick: Error-Tolerant Interactive Segmentation of Any Medical Volumes via Hierarchical Expert Consensus

Yifan Gao, Jiaxi Sheng, Wenbin Wu, Haoyue Li, Yaoxian Dong, Chaoyang Ge, Feng Yuan, Xin Gao

arxiv logopreprintJun 23 2025
Foundation models for volumetric medical image segmentation have emerged as powerful tools in clinical workflows, enabling radiologists to delineate regions of interest through intuitive clicks. While these models demonstrate promising capabilities in segmenting previously unseen anatomical structures, their performance is strongly influenced by prompt quality. In clinical settings, radiologists often provide suboptimal prompts, which affects segmentation reliability and accuracy. To address this limitation, we present SafeClick, an error-tolerant interactive segmentation approach for medical volumes based on hierarchical expert consensus. SafeClick operates as a plug-and-play module compatible with foundation models including SAM 2 and MedSAM 2. The framework consists of two key components: a collaborative expert layer (CEL) that generates diverse feature representations through specialized transformer modules, and a consensus reasoning layer (CRL) that performs cross-referencing and adaptive integration of these features. This architecture transforms the segmentation process from a prompt-dependent operation to a robust framework capable of producing accurate results despite imperfect user inputs. Extensive experiments across 15 public datasets demonstrate that our plug-and-play approach consistently improves the performance of base foundation models, with particularly significant gains when working with imperfect prompts. The source code is available at https://github.com/yifangao112/SafeClick.

Training-free Test-time Improvement for Explainable Medical Image Classification

Hangzhou He, Jiachen Tang, Lei Zhu, Kaiwen Li, Yanye Lu

arxiv logopreprintJun 22 2025
Deep learning-based medical image classification techniques are rapidly advancing in medical image analysis, making it crucial to develop accurate and trustworthy models that can be efficiently deployed across diverse clinical scenarios. Concept Bottleneck Models (CBMs), which first predict a set of explainable concepts from images and then perform classification based on these concepts, are increasingly being adopted for explainable medical image classification. However, the inherent explainability of CBMs introduces new challenges when deploying trained models to new environments. Variations in imaging protocols and staining methods may induce concept-level shifts, such as alterations in color distribution and scale. Furthermore, since CBM training requires explicit concept annotations, fine-tuning models solely with image-level labels could compromise concept prediction accuracy and faithfulness - a critical limitation given the high cost of acquiring expert-annotated concept labels in medical domains. To address these challenges, we propose a training-free confusion concept identification strategy. By leveraging minimal new data (e.g., 4 images per class) with only image-level labels, our approach enhances out-of-domain performance without sacrificing source domain accuracy through two key operations: masking misactivated confounding concepts and amplifying under-activated discriminative concepts. The efficacy of our method is validated on both skin and white blood cell images. Our code is available at: https://github.com/riverback/TF-TTI-XMed.

Enabling PSO-Secure Synthetic Data Sharing Using Diversity-Aware Diffusion Models

Mischa Dombrowski, Bernhard Kainz

arxiv logopreprintJun 22 2025
Synthetic data has recently reached a level of visual fidelity that makes it nearly indistinguishable from real data, offering great promise for privacy-preserving data sharing in medical imaging. However, fully synthetic datasets still suffer from significant limitations: First and foremost, the legal aspect of sharing synthetic data is often neglected and data regulations, such as the GDPR, are largley ignored. Secondly, synthetic models fall short of matching the performance of real data, even for in-domain downstream applications. Recent methods for image generation have focused on maximising image diversity instead of fidelity solely to improve the mode coverage and therefore the downstream performance of synthetic data. In this work, we shift perspective and highlight how maximizing diversity can also be interpreted as protecting natural persons from being singled out, which leads to predicate singling-out (PSO) secure synthetic datasets. Specifically, we propose a generalisable framework for training diffusion models on personal data which leads to unpersonal synthetic datasets achieving performance within one percentage point of real-data models while significantly outperforming state-of-the-art methods that do not ensure privacy. Our code is available at https://github.com/MischaD/Trichotomy.

An Open-Source Generalizable Deep Learning Framework for Automated Corneal Segmentation in Anterior Segment Optical Coherence Tomography Imaging

Kandakji, L., Liu, S., Balal, S., Moghul, I., Allan, B., Tuft, S., Gore, D., Pontikos, N.

medrxiv logopreprintJun 20 2025
PurposeTo develop a deep learning model - Cornea nnU-Net Extractor (CUNEX) - for full-thickness corneal segmentation of anterior segment optical coherence tomography (AS-OCT) images and evaluate its utility in artificial intelligence (AI) research. MethodsWe trained and evaluated CUNEX using nnU-Net on 600 AS-OCT images (CSO MS-39) from 300 patients: 100 normal, 100 keratoconus (KC), and 100 Fuchs endothelial corneal dystrophy (FECD) eyes. To assess generalizability, we externally validated CUNEX on 1,168 AS-OCT images from an infectious keratitis dataset acquired from a different device (Casia SS-1000). We benchmarked CUNEX against two recent models, CorneaNet and ScLNet. We then applied CUNEX to our dataset of 194,599 scans from 37,499 patients as preprocessing for a classification model evaluating whether segmentation improves AI prediction, including age, sex, and disease staging (KC and FECD). ResultsCUNEX achieved Dice similarity coefficient (DSC) and intersection over union (IoU) scores ranging from 94-95% and 90-99%, respectively, across healthy, KC, and FECD eyes. This was similar to ScLNet (within 3%) but better than CorneaNet (8-35% lower). On external validation, CUNEX maintained high performance (DSC 83%; IoU 71%) while ScLNet (DSC 14%; IoU 8%) and CorneaNet (DSC 16%; IoU 9%) failed to generalize. Unexpectedly, segmentation minimally impacted classification accuracy except for sex prediction, where accuracy dropped from 81 to 68%, suggesting sex-related features may lie outside the cornea. ConclusionCUNEX delivers the first open-source generalizable corneal segmentation model using the latest framework, supporting its use in clinical analysis and AI workflows across diseases and imaging platforms. It is available at https://github.com/lkandakji/CUNEX.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

EchoFM: Foundation Model for Generalizable Echocardiogram Analysis.

Kim S, Jin P, Song S, Chen C, Li Y, Ren H, Li X, Liu T, Li Q

pubmed logopapersJun 18 2025
Echocardiography is the first-line noninvasive cardiac imaging modality, providing rich spatio-temporal information on cardiac anatomy and physiology. Recently, foundation model trained on extensive and diverse datasets has shown strong performance in various downstream tasks. However, translating foundation models into the medical imaging domain remains challenging due to domain differences between medical and natural images, the lack of diverse patient and disease datasets. In this paper, we introduce EchoFM, a general-purpose vision foundation model for echocardiography trained on a large-scale dataset of over 20 million echocardiographic images from 6,500 patients. To enable effective learning of rich spatio-temporal representations from periodic videos, we propose a novel self-supervised learning framework based on a masked autoencoder with a spatio-temporal consistent masking strategy and periodic-driven contrastive learning. The learned cardiac representations can be readily adapted and fine-tuned for a wide range of downstream tasks, serving as a strong and flexible backbone model. We validate EchoFM through experiments across key downstream tasks in the clinical echocardiography workflow, leveraging public and multi-center internal datasets. EchoFM consistently outperforms SOTA methods, demonstrating superior generalization capabilities and flexibility. The code and checkpoints are available at: https://github.com/SekeunKim/EchoFM.git.
Page 42 of 59587 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.