An Open-Source Generalizable Deep Learning Framework for Automated Corneal Segmentation in Anterior Segment Optical Coherence Tomography Imaging
Authors
Affiliations (1)
Affiliations (1)
- UCL
Abstract
PurposeTo develop a deep learning model - Cornea nnU-Net Extractor (CUNEX) - for full-thickness corneal segmentation of anterior segment optical coherence tomography (AS-OCT) images and evaluate its utility in artificial intelligence (AI) research. MethodsWe trained and evaluated CUNEX using nnU-Net on 600 AS-OCT images (CSO MS-39) from 300 patients: 100 normal, 100 keratoconus (KC), and 100 Fuchs endothelial corneal dystrophy (FECD) eyes. To assess generalizability, we externally validated CUNEX on 1,168 AS-OCT images from an infectious keratitis dataset acquired from a different device (Casia SS-1000). We benchmarked CUNEX against two recent models, CorneaNet and ScLNet. We then applied CUNEX to our dataset of 194,599 scans from 37,499 patients as preprocessing for a classification model evaluating whether segmentation improves AI prediction, including age, sex, and disease staging (KC and FECD). ResultsCUNEX achieved Dice similarity coefficient (DSC) and intersection over union (IoU) scores ranging from 94-95% and 90-99%, respectively, across healthy, KC, and FECD eyes. This was similar to ScLNet (within 3%) but better than CorneaNet (8-35% lower). On external validation, CUNEX maintained high performance (DSC 83%; IoU 71%) while ScLNet (DSC 14%; IoU 8%) and CorneaNet (DSC 16%; IoU 9%) failed to generalize. Unexpectedly, segmentation minimally impacted classification accuracy except for sex prediction, where accuracy dropped from 81 to 68%, suggesting sex-related features may lie outside the cornea. ConclusionCUNEX delivers the first open-source generalizable corneal segmentation model using the latest framework, supporting its use in clinical analysis and AI workflows across diseases and imaging platforms. It is available at https://github.com/lkandakji/CUNEX.