Sort by:
Page 42 of 1411408 results

Enhanced Sarcopenia Detection in Nursing Home Residents Using Ultrasound Radiomics and Machine Learning.

Fu H, Luo S, Zhuo Y, Lian R, Chen X, Jiang W, Wang L, Yang M

pubmed logopapersAug 26 2025
Ultrasound only has low-to-moderate accuracy for sarcopenia. We aimed to investigate whether ultrasound radiomics combined with machine learning enhances sarcopenia diagnostic accuracy compared with conventional ultrasound parameters among older adults in long-term care. Diagnostic accuracy study. A total of 628 residents from 15 nursing homes in China. Sarcopenia diagnosis followed AWGS 2019 criteria. Ultrasound of thigh muscles (rectus femoris [ReF], vastus intermedius [VI], and quadriceps femoris [QF]) was performed. Conventional parameters (muscle thickness [MT], echo intensity [EI]) and radiomic features were extracted. Participants were split into training (70%)/validation (30%) sets. Conventional (muscle thickness + EI), radiomics, and integrated (MT, echo intensity, radiomics, basic clinical data including age, sex, and body mass index) models were built using 5 machine learning algorithms (including logistic regression [LR]). Performance was assessed in the validation set using the area under the receiver operating characteristic curve (AUC), calibration, and decision curve analysis (DCA). Sarcopenia prevalence was 61.9%. The LR algorithm consistently exhibited superior performance. The diagnostic accuracy of the ultrasound radiomic models was superior to that of the models based on conventional ultrasound parameters, regardless of muscle group. The integrated models further improved the accuracy, achieving AUCs (95% CIs) of 0.85 (0.79-0.91) for ReF, 0.81 (0.75-0.87) for VI, and 0.83 (0.77-0.90) for QF. In the validation set, the AUCs (95% CIs) for the conventional ultrasound models were 0.70 (0.63-0.78) for ReF, 0.73 (0.65-0.80) for VI, and 0.75 (0.68-0.82) for QF. The corresponding AUCs (95% CIs) for the radiomics models were 0.76 (0.69-0.83) for ReF, 0.76 (0.69-0.83) for VI, and 0.78 (0.71-0.85) for QF. The integrated models demonstrated good calibration and net benefit in DCA. Ultrasound radiomics, especially when integrated with conventional parameters and clinical data using LR, significantly improves sarcopenia diagnostic accuracy in nursing home residents. This accessible, noninvasive approach holds promise for enhancing sarcopenia screening and early detection in long-term care settings.

Machine Learning-Driven radiomics on 18 F-FDG PET for glioma diagnosis: a systematic review and meta-analysis.

Shahriari A, Ghazanafar Ahari S, Mousavi A, Sadeghi M, Abbasi M, Hosseinpour M, Mir A, Zohouri Zanganeh D, Gharedaghi H, Ezati S, Sareminia A, Seyedi D, Shokouhfar M, Darzi A, Ghaedamini A, Zamani S, Khosravi F, Asadi Anar M

pubmed logopapersAug 26 2025
Machine learning (ML) applied to radiomics has revolutionized neuro-oncological imaging, yet the diagnostic performance of ML models based specifically on ^18F-FDG PET features in glioma remains poorly characterized. To systematically evaluate and quantitatively synthesize the diagnostic accuracy of ML models trained on ^18F-FDG PET radiomics for glioma classification. We conducted a PRISMA-compliant systematic review and meta-analysis registered on OSF ( https://doi.org/10.17605/OSF.IO/XJG6P ). PubMed, Scopus, and Web of Science were searched up to January 2025. Studies were included if they applied ML algorithms to ^18F-FDG PET radiomic features for glioma classification and reported at least one performance metric. Data extraction included demographics, imaging protocols, feature types, ML models, and validation design. Meta-analysis was performed using random-effects models with pooled estimates of accuracy, sensitivity, specificity, AUC, F1 score, and precision. Heterogeneity was explored via meta-regression and Galbraith plots. Twelve studies comprising 2,321 patients were included. Pooled diagnostic metrics were: accuracy 92.6% (95% CI: 91.3-93.9%), AUC 0.95 (95% CI: 0.94-0.95), sensitivity 85.4%, specificity 89.7%, F1 score 0.78, and precision 0.90. Heterogeneity was high across all domains (I² >75%). Meta-regression identified ML model type and validation strategy as partial moderators. Models using CNNs or PET/MRI integration achieved superior performance. ML models based on ^18F-FDG PET radiomics demonstrate strong and balanced diagnostic performance for glioma classification. However, methodological heterogeneity underscores the need for standardized pipelines, external validation, and transparent reporting before clinical integration.

Bronchiectasis in patients with chronic obstructive pulmonary disease: AI-based CT quantification using the bronchial tapering ratio.

Park H, Choe J, Lee SM, Lim S, Lee JS, Oh YM, Lee JB, Hwang HJ, Yun J, Bae S, Yu D, Loh LC, Ong CK, Seo JB

pubmed logopapersAug 26 2025
Although chest CT is the primary tool for evaluating bronchiectasis, accurately measuring its extent poses challenges. This study aimed to automatically quantify bronchiectasis using an artificial intelligence (AI)-based analysis of the bronchial tapering ratio on chest CT and assess its association with clinical outcomes in patients with chronic obstructive pulmonary disease (COPD). COPD patients from two prospective multicenter cohorts were included. AI-based airway quantification was performed on baseline CT, measuring the tapering ratio for each bronchus in the whole lung. The bronchiectasis score accounting for the extent of bronchi with abnormal tapering (inner lumen tapering ratio ≥ 1.1, indicating airway dilatation) in the whole lung was calculated. Associations between the bronchiectasis score and all-cause mortality and acute exacerbation (AE) were assessed using multivariable models. The discovery and validation cohorts included 361 (mean age, 67 years; 97.5% men) and 112 patients (mean age, 67 years; 93.7% men), respectively. In the discovery cohort, 220 (60.9%) had a history of at least one AE and 59 (16.3%) died during follow-up, and 18 (16.1%) died in the validation cohort. Bronchiectasis score was independently associated with increased mortality (discovery: adjusted HR, 1.86 [95% CI: 1.08-3.18]; validation: HR, 5.42 [95% CI: 1.97-14.92]). The score was also associated with risk of any AE, severe AE, and shorter time to first AE (for all, p < 0.05). In patients with COPD, the quantified extent of bronchiectasis using AI-based CT quantification of the bronchial tapering ratio was associated with all-cause mortality and the risk of AE over time. Question Can AI-based CT quantification of bronchial tapering reliably assess bronchiectasis relevant to clinical outcomes in patients with COPD? Findings Scores from this AI-based method of automatically quantifying the extent of whole lung bronchiectasis were independently associated with all-cause mortality and risk of AEs in COPD patients. Clinical relevance AI-based bronchiectasis analysis on CT may shift clinical research toward more objective, quantitative assessment methods and support risk stratification and management in COPD, highlighting its potential to enhance clinically relevant imaging evaluation.

SWiFT: Soft-Mask Weight Fine-tuning for Bias Mitigation

Junyu Yan, Feng Chen, Yuyang Xue, Yuning Du, Konstantinos Vilouras, Sotirios A. Tsaftaris, Steven McDonagh

arxiv logopreprintAug 26 2025
Recent studies have shown that Machine Learning (ML) models can exhibit bias in real-world scenarios, posing significant challenges in ethically sensitive domains such as healthcare. Such bias can negatively affect model fairness, model generalization abilities and further risks amplifying social discrimination. There is a need to remove biases from trained models. Existing debiasing approaches often necessitate access to original training data and need extensive model retraining; they also typically exhibit trade-offs between model fairness and discriminative performance. To address these challenges, we propose Soft-Mask Weight Fine-Tuning (SWiFT), a debiasing framework that efficiently improves fairness while preserving discriminative performance with much less debiasing costs. Notably, SWiFT requires only a small external dataset and only a few epochs of model fine-tuning. The idea behind SWiFT is to first find the relative, and yet distinct, contributions of model parameters to both bias and predictive performance. Then, a two-step fine-tuning process updates each parameter with different gradient flows defined by its contribution. Extensive experiments with three bias sensitive attributes (gender, skin tone, and age) across four dermatological and two chest X-ray datasets demonstrate that SWiFT can consistently reduce model bias while achieving competitive or even superior diagnostic accuracy under common fairness and accuracy metrics, compared to the state-of-the-art. Specifically, we demonstrate improved model generalization ability as evidenced by superior performance on several out-of-distribution (OOD) datasets.

MedVQA-TREE: A Multimodal Reasoning and Retrieval Framework for Sarcopenia Prediction

Pardis Moradbeiki, Nasser Ghadiri, Sayed Jalal Zahabi, Uffe Kock Wiil, Kristoffer Kittelmann Brockhattingen, Ali Ebrahimi

arxiv logopreprintAug 26 2025
Accurate sarcopenia diagnosis via ultrasound remains challenging due to subtle imaging cues, limited labeled data, and the absence of clinical context in most models. We propose MedVQA-TREE, a multimodal framework that integrates a hierarchical image interpretation module, a gated feature-level fusion mechanism, and a novel multi-hop, multi-query retrieval strategy. The vision module includes anatomical classification, region segmentation, and graph-based spatial reasoning to capture coarse, mid-level, and fine-grained structures. A gated fusion mechanism selectively integrates visual features with textual queries, while clinical knowledge is retrieved through a UMLS-guided pipeline accessing PubMed and a sarcopenia-specific external knowledge base. MedVQA-TREE was trained and evaluated on two public MedVQA datasets (VQA-RAD and PathVQA) and a custom sarcopenia ultrasound dataset. The model achieved up to 99% diagnostic accuracy and outperformed previous state-of-the-art methods by over 10%. These results underscore the benefit of combining structured visual understanding with guided knowledge retrieval for effective AI-assisted diagnosis in sarcopenia.

Stress-testing cross-cancer generalizability of 3D nnU-Net for PET-CT tumor segmentation: multi-cohort evaluation with novel oesophageal and lung cancer datasets

Soumen Ghosh, Christine Jestin Hannan, Rajat Vashistha, Parveen Kundu, Sandra Brosda, Lauren G. Aoude, James Lonie, Andrew Nathanson, Jessica Ng, Andrew P. Barbour, Viktor Vegh

arxiv logopreprintAug 26 2025
Robust generalization is essential for deploying deep learning based tumor segmentation in clinical PET-CT workflows, where anatomical sites, scanners, and patient populations vary widely. This study presents the first cross cancer evaluation of nnU-Net on PET-CT, introducing two novel, expert-annotated whole-body datasets. 279 patients with oesophageal cancer (Australian cohort) and 54 with lung cancer (Indian cohort). These cohorts complement the public AutoPET dataset and enable systematic stress-testing of cross domain performance. We trained and tested 3D nnUNet models under three paradigms. Target only (oesophageal), public only (AutoPET), and combined training. For the tested sets, the oesophageal only model achieved the best in-domain accuracy (mean DSC, 57.8) but failed on external Indian lung cohort (mean DSC less than 3.4), indicating severe overfitting. The public only model generalized more broadly (mean DSC, 63.5 on AutoPET, 51.6 on Indian lung cohort) but underperformed in oesophageal Australian cohort (mean DSC, 26.7). The combined approach provided the most balanced results (mean DSC, lung (52.9), oesophageal (40.7), AutoPET (60.9)), reducing boundary errors and improving robustness across all cohorts. These findings demonstrate that dataset diversity, particularly multi demographic, multi center and multi cancer integration, outweighs architectural novelty as the key driver of robust generalization. This work presents the demography based cross cancer deep learning segmentation evaluation and highlights dataset diversity, rather than model complexity, as the foundation for clinically robust segmentation.

Improved pulmonary embolism detection in CT pulmonary angiogram scans with hybrid vision transformers and deep learning techniques.

Abdelhamid A, El-Ghamry A, Abdelhay EH, Abo-Zahhad MM, Moustafa HE

pubmed logopapersAug 26 2025
Pulmonary embolism (PE) represents a severe, life-threatening cardiovascular condition and is notably the third leading cause of cardiovascular mortality, after myocardial infarction and stroke. This pathology occurs when blood clots obstruct the pulmonary arteries, impeding blood flow and oxygen exchange in the lungs. Prompt and accurate detection of PE is critical for appropriate clinical decision-making and patient survival. The complexity involved in interpreting medical images can often results misdiagnosis. However, recent advances in Deep Learning (DL) have substantially improved the capabilities of Computer-Aided Diagnosis (CAD) systems. Despite these advancements, existing single-model DL methods are limited when handling complex, diverse, and imbalanced medical imaging datasets. Addressing this gap, our research proposes an ensemble framework for classifying PE, capitalizing on the unique capabilities of ResNet50, DenseNet121, and Swin Transformer models. This ensemble method harnesses the complementary strengths of convolutional neural networks (CNNs) and vision transformers (ViTs), leading to improved prediction accuracy and model robustness. The proposed methodology includes a sophisticated preprocessing pipeline leveraging autoencoder (AE)-based dimensionality reduction, data augmentation to avoid overfitting, discrete wavelet transform (DWT) for multiscale feature extraction, and Sobel filtering for effective edge detection and noise reduction. The proposed model was rigorously evaluated using the public Radiological Society of North America (RSNA-STR) PE dataset, demonstrating remarkable performance metrics of 97.80% accuracy and a 0.99 for Area Under Receiver Operating Curve (AUROC). Comparative analysis demonstrated superior performance over state-of-the-art pre-trained models and recent ViT-based approaches, highlighting our method's effectiveness in improving early PE detection and providing robust support for clinical decision-making.

GReAT: leveraging geometric artery data to improve wall shear stress assessment

Julian Suk, Jolanda J. Wentzel, Patryk Rygiel, Joost Daemen, Daniel Rueckert, Jelmer M. Wolterink

arxiv logopreprintAug 26 2025
Leveraging big data for patient care is promising in many medical fields such as cardiovascular health. For example, hemodynamic biomarkers like wall shear stress could be assessed from patient-specific medical images via machine learning algorithms, bypassing the need for time-intensive computational fluid simulation. However, it is extremely challenging to amass large-enough datasets to effectively train such models. We could address this data scarcity by means of self-supervised pre-training and foundations models given large datasets of geometric artery models. In the context of coronary arteries, leveraging learned representations to improve hemodynamic biomarker assessment has not yet been well studied. In this work, we address this gap by investigating whether a large dataset (8449 shapes) consisting of geometric models of 3D blood vessels can benefit wall shear stress assessment in coronary artery models from a small-scale clinical trial (49 patients). We create a self-supervised target for the 3D blood vessels by computing the heat kernel signature, a quantity obtained via Laplacian eigenvectors, which captures the very essence of the shapes. We show how geometric representations learned from this datasets can boost segmentation of coronary arteries into regions of low, mid and high (time-averaged) wall shear stress even when trained on limited data.

Validation of an Automated CT Image Analysis in the Prevention of Urinary Stones with Hydration Trial.

Tasian GE, Maalouf NM, Harper JD, Sivalingam S, Logan J, Al-Khalidi HR, Lieske JC, Selman-Fermin A, Desai AC, Lai H, Kirkali Z, Scales CD, Fan Y

pubmed logopapersAug 26 2025
<b><i>Introduction and Objective:</i></b> Kidney stone growth and new stone formation are common clinical trial endpoints and are associated with future symptomatic events. To date, a manual review of CT scans has been required to assess stone growth and new stone formation, which is laborious. We validated the performance of a software algorithm that automatically identified, registered, and measured stones over longitudinal CT studies. <b><i>Methods:</i></b> We validated the performance of a pretrained machine learning algorithm to classify stone outcomes on longitudinal CT scan images at baseline and at the end of the 2-year follow-up period for 62 participants aged >18 years in the Prevention of Urinary Stones with Hydration (PUSH) randomized controlled trial. Stones were defined as an area of voxels with a minimum linear dimension of 2 mm that was higher in density than the mean plus 4 standard deviations of all nonnegative HU values within the kidney. The four outcomes assessed were: (1) growth of at least one existing stone by ≥2 mm, (2) formation of at least one new ≥2 mm stone, (3) no stone growth or new stone formation, and (4) loss of at least one stone. The accuracy of the algorithm was determined by comparing its outcomes to the gold standard of independent review of the CT images by at least two expert clinicians. <b><i>Results:</i></b> The algorithm correctly classified outcomes for 61 paired scans (98.4%). One pair that the algorithm incorrectly classified as stone growth was a new renal artery calcification on end-of-study CT. <b><i>Conclusions:</i></b> An automated image analysis method validated for the prospective PUSH trial was highly accurate for determining clinical outcomes of new stone formation, stone growth, stable stone size, and stone loss on longitudinal CT images. This method has the potential to improve the accuracy and efficiency of clinical care and endpoint determination for future clinical trials.

Random forest-based out-of-distribution detection for robust lung cancer segmentation

Aneesh Rangnekar, Harini Veeraraghavan

arxiv logopreprintAug 26 2025
Accurate detection and segmentation of cancerous lesions from computed tomography (CT) scans is essential for automated treatment planning and cancer treatment response assessment. Transformer-based models with self-supervised pretraining can produce reliably accurate segmentation from in-distribution (ID) data but degrade when applied to out-of-distribution (OOD) datasets. We address this challenge with RF-Deep, a random forest classifier that utilizes deep features from a pretrained transformer encoder of the segmentation model to detect OOD scans and enhance segmentation reliability. The segmentation model comprises a Swin Transformer encoder, pretrained with masked image modeling (SimMIM) on 10,432 unlabeled 3D CT scans covering cancerous and non-cancerous conditions, with a convolution decoder, trained to segment lung cancers in 317 3D scans. Independent testing was performed on 603 3D CT public datasets that included one ID dataset and four OOD datasets comprising chest CTs with pulmonary embolism (PE) and COVID-19, and abdominal CTs with kidney cancers and healthy volunteers. RF-Deep detected OOD cases with a FPR95 of 18.26%, 27.66%, and less than 0.1% on PE, COVID-19, and abdominal CTs, consistently outperforming established OOD approaches. The RF-Deep classifier provides a simple and effective approach to enhance reliability of cancer segmentation in ID and OOD scenarios.
Page 42 of 1411408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.