Sort by:
Page 410 of 4524519 results

TransMedSeg: A Transferable Semantic Framework for Semi-Supervised Medical Image Segmentation

Mengzhu Wang, Jiao Li, Shanshan Wang, Long Lan, Huibin Tan, Liang Yang, Guoli Yang

arxiv logopreprintMay 20 2025
Semi-supervised learning (SSL) has achieved significant progress in medical image segmentation (SSMIS) through effective utilization of limited labeled data. While current SSL methods for medical images predominantly rely on consistency regularization and pseudo-labeling, they often overlook transferable semantic relationships across different clinical domains and imaging modalities. To address this, we propose TransMedSeg, a novel transferable semantic framework for semi-supervised medical image segmentation. Our approach introduces a Transferable Semantic Augmentation (TSA) module, which implicitly enhances feature representations by aligning domain-invariant semantics through cross-domain distribution matching and intra-domain structural preservation. Specifically, TransMedSeg constructs a unified feature space where teacher network features are adaptively augmented towards student network semantics via a lightweight memory module, enabling implicit semantic transformation without explicit data generation. Interestingly, this augmentation is implicitly realized through an expected transferable cross-entropy loss computed over the augmented teacher distribution. An upper bound of the expected loss is theoretically derived and minimized during training, incurring negligible computational overhead. Extensive experiments on medical image datasets demonstrate that TransMedSeg outperforms existing semi-supervised methods, establishing a new direction for transferable representation learning in medical image analysis.

Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI

Marlène Careil, Yohann Benchetrit, Jean-Rémi King

arxiv logopreprintMay 20 2025
Brain-to-image decoding has been recently propelled by the progress in generative AI models and the availability of large ultra-high field functional Magnetic Resonance Imaging (fMRI). However, current approaches depend on complicated multi-stage pipelines and preprocessing steps that typically collapse the temporal dimension of brain recordings, thereby limiting time-resolved brain decoders. Here, we introduce Dynadiff (Dynamic Neural Activity Diffusion for Image Reconstruction), a new single-stage diffusion model designed for reconstructing images from dynamically evolving fMRI recordings. Our approach offers three main contributions. First, Dynadiff simplifies training as compared to existing approaches. Second, our model outperforms state-of-the-art models on time-resolved fMRI signals, especially on high-level semantic image reconstruction metrics, while remaining competitive on preprocessed fMRI data that collapse time. Third, this approach allows a precise characterization of the evolution of image representations in brain activity. Overall, this work lays the foundation for time-resolved brain-to-image decoding.

A multi-modal model integrating MRI habitat and clinicopathology to predict platinum sensitivity in patients with high-grade serous ovarian cancer: a diagnostic study.

Bi Q, Ai C, Meng Q, Wang Q, Li H, Zhou A, Shi W, Lei Y, Wu Y, Song Y, Xiao Z, Li H, Qiang J

pubmed logopapersMay 20 2025
Platinum resistance of high-grade serous ovarian cancer (HGSOC) cannot currently be recognized by specific molecular biomarkers. We aimed to compare the predictive capacity of various models integrating MRI habitat, whole slide images (WSIs), and clinical parameters to predict platinum sensitivity in HGSOC patients. A retrospective study involving 998 eligible patients from four hospitals was conducted. MRI habitats were clustered using K-means algorithm on multi-parametric MRI. Following feature extraction and selection, a Habitat model was developed. Vision Transformer (ViT) and multi-instance learning were trained to derive the patch-level prediction and WSI-level prediction on hematoxylin and eosin (H&E)-stained WSIs, respectively, forming a Pathology model. Logistic regression (LR) was used to create a Clinic model. A multi-modal model integrating Clinic, Habitat, and Pathology (CHP) was constructed using Multi-Head Attention (MHA) and compared with the unimodal models and Ensemble multi-modal models. The area under the curve (AUC) and integrated discrimination improvement (IDI) value were used to assess model performance and gains. In the internal validation cohort and the external test cohort, the Habitat model showed the highest AUCs (0.722 and 0.685) compared to the Clinic model (0.683 and 0.681) and the Pathology model (0.533 and 0.565), respectively. The AUCs (0.789 and 0.807) of the multi-modal model interating CHP based on MHA were highest than those of any unimodal models and Ensemble multi-modal models, with positive IDI values. MRI-based habitat imaging showed potentials to predict platinum sensitivity in HGSOC patients. Multi-modal integration of CHP based on MHA was helpful to improve prediction performance.

Expert-guided StyleGAN2 image generation elevates AI diagnostic accuracy for maxillary sinus lesions.

Zeng P, Song R, Chen S, Li X, Li H, Chen Y, Gong Z, Cai G, Lin Y, Shi M, Huang K, Chen Z

pubmed logopapersMay 20 2025
The progress of artificial intelligence (AI) research in dental medicine is hindered by data acquisition challenges and imbalanced distributions. These problems are especially apparent when planning to develop AI-based diagnostic or analytic tools for various lesions, such as maxillary sinus lesions (MSL) including mucosal thickening and polypoid lesions. Traditional unsupervised generative models struggle to simultaneously control the image realism, diversity, and lesion-type specificity. This study establishes an expert-guided framework to overcome these limitations to elevate AI-based diagnostic accuracy. A StyleGAN2 framework was developed for generating clinically relevant MSL images (such as mucosal thickening and polypoid lesion) under expert control. The generated images were then integrated into training datasets to evaluate their effect on ResNet50's diagnostic performance. Here we show: 1) Both lesion subtypes achieve satisfactory fidelity metrics, with structural similarity indices (SSIM > 0.996) and maximum mean discrepancy values (MMD < 0.032), and clinical validation scores close to those of real images; 2) Integrating baseline datasets with synthetic images significantly enhances diagnostic accuracy for both internal and external test sets, particularly improving area under the precision-recall curve (AUPRC) by approximately 8% and 14% for mucosal thickening and polypoid lesions in the internal test set, respectively. The StyleGAN2-based image generation tool effectively addressed data scarcity and imbalance through high-quality MSL image synthesis, consequently boosting diagnostic model performance. This work not only facilitates AI-assisted preoperative assessment for maxillary sinus lift procedures but also establishes a methodological framework for overcoming data limitations in medical image analysis.

Pancreas segmentation in CT scans: A novel MOMUNet based workflow.

Juwita J, Hassan GM, Datta A

pubmed logopapersMay 20 2025
Automatic pancreas segmentation in CT scans is crucial for various medical applications, including early diagnosis and computer-assisted surgery. However, existing segmentation methods remain suboptimal due to significant pancreas size variations across slices and severe class imbalance caused by the pancreas's small size and CT scanner movement during imaging. Traditional computer vision techniques struggle with these challenges, while deep learning-based approaches, despite their success in other domains, still face limitations in pancreas segmentation. To address these issues, we propose a novel, three-stage workflow that enhances segmentation accuracy and computational efficiency. First, we introduce External Contour Cropping (ECC), a background cleansing technique that mitigates class imbalance. Second, we propose a Size Ratio (SR) technique that restructures the training dataset based on the relative size of the target organ, improving the robustness of the model against anatomical variations. Third, we develop MOMUNet, an ultra-lightweight segmentation model with only 1.31 million parameters, designed for optimal performance on limited computational resources. Our proposed workflow achieves an improvement in Dice Score (DSC) of 2.56% over state-of-the-art (SOTA) models in the NIH-Pancreas dataset and 2.97% in the MSD-Pancreas dataset. Furthermore, applying the proposed model to another small organ, such as colon cancer segmentation in the MSD-Colon dataset, yielded a DSC of 68.4%, surpassing the SOTA models. These results demonstrate the effectiveness of our approach in significantly improving segmentation accuracy for small abdomen organs including pancreas and colon, making deep learning more accessible for low-resource medical facilities.

Deep-Learning Reconstruction for 7T MP2RAGE and SPACE MRI: Improving Image Quality at High Acceleration Factors.

Liu Z, Patel V, Zhou X, Tao S, Yu T, Ma J, Nickel D, Liebig P, Westerhold EM, Mojahed H, Gupta V, Middlebrooks EH

pubmed logopapersMay 20 2025
Deep learning (DL) reconstruction has been successful in realizing otherwise impracticable acceleration factors and improving image quality in conventional MRI field strengths; however, there has been limited application to ultra-high field MRI.The objective of this study was to evaluate the performance of a prototype DL-based image reconstruction technique in 7T MRI of the brain utilizing MP2RAGE and SPACE acquisitions, in comparison to reconstructions in conventional compressed sensing (CS) and controlled aliasing in parallel imaging (CAIPIRINHA) techniques. This retrospective study involved 60 patients who underwent 7T brain MRI between June 2024 and October 2024, comprised of 30 patients with MP2RAGE data and 30 patients with SPACE FLAIR data. Each set of raw data was reconstructed with DL-based reconstruction and conventional reconstruction. Image quality was independently assessed by two neuroradiologists using a 5-point Likert scale, which included overall image quality, artifacts, sharpness, structural conspicuity, and noise level. Inter-observer agreement was determined using top-box analysis. Contrast-to-noise ratio (CNR) and noise levels were quantitatively evaluated and compared using the Wilcoxon signed-rank test. DL-based reconstruction resulted in a significant increase in overall image quality and a reduction in subjective noise level for both MP2RAGE and SPACE FLAIR data (all P<0.001), with no significant differences in image artifacts (all P>0.05). When compared to standard reconstruction, the implementation of DL-based reconstruction yielded an increase in CNR of 49.5% [95% CI 33.0-59.0%] for MP2RAGE data and 90.6% [95% CI 73.2-117.7%] for SPACE FLAIR data, along with a decrease in noise of 33.5% [95% CI 23.0-38.0%] for MP2RAGE data and 47.5% [95% CI 41.9-52.6%] for SPACE FLAIR data. DL-based reconstruction of 7T MRI significantly enhanced image quality compared to conventional reconstruction without introducing image artifacts. The achievable high acceleration factors have the potential to substantially improve image quality and resolution in 7T MRI. CAIPIRINHA = Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration; CNR = contrast-to-noise ratio; CS = compressed sensing; DL = deep learning; MNI = Montreal Neurological Institute; MP2RAGE = Magnetization-Prepared 2 Rapid Acquisition Gradient Echoes; SPACE = Sampling Perfection with Application-Optimized Contrasts using Different Flip Angle Evolutions.

Enhancing pathological myopia diagnosis: a bimodal artificial intelligence approach integrating fundus and optical coherence tomography imaging for precise atrophy, traction and neovascularisation grading.

Xu Z, Yang Y, Chen H, Han R, Han X, Zhao J, Yu W, Yang Z, Chen Y

pubmed logopapersMay 20 2025
Pathological myopia (PM) has emerged as a leading cause of global visual impairment, early detection and precise grading of PM are crucial for timely intervention. The atrophy, traction and neovascularisation (ATN) system is applied to define PM progression and stages with precision. This study focuses on constructing a comprehensive PM image dataset comprising both fundus and optical coherence tomography (OCT) images and developing a bimodal artificial intelligence (AI) classification model for ATN grading in PM. This single-centre retrospective cross-sectional study collected 2760 colour fundus photographs and matching OCT images of PM from January 2019 to November 2022 at Peking Union Medical College Hospital. Ophthalmology specialists labelled and inspected all paired images using the ATN grading system. The AI model used a ResNet-50 backbone and a multimodal multi-instance learning module to enhance interaction across instances from both modalities. Performance comparisons among single-modality fundus, OCT and bimodal AI models were conducted for ATN grading in PM. The bimodality model, dual-deep learning (DL), demonstrated superior accuracy in both detailed multiclassification and biclassification of PM, which aligns well with our observation from instance attention-weight activation maps. The area under the curve for severe PM using dual-DL was 0.9635 (95% CI 0.9380 to 0.9890), compared with 0.9359 (95% CI 0.9027 to 0.9691) for the solely OCT model and 0.9268 (95% CI 0.8915 to 0.9621) for the fundus model. Our novel bimodal AI multiclassification model for PM ATN staging proves accurate and beneficial for public health screening and prompt referral of PM patients.

An explainable AI-driven deep neural network for accurate breast cancer detection from histopathological and ultrasound images.

Alom MR, Farid FA, Rahaman MA, Rahman A, Debnath T, Miah ASM, Mansor S

pubmed logopapersMay 20 2025
Breast cancer represents a significant global health challenge, which makes it essential to detect breast cancer early and accurately to improve patient prognosis and reduce mortality rates. However, traditional diagnostic processes relying on manual analysis of medical images are inherently complex and subject to variability between observers, highlighting the urgent need for robust automated breast cancer detection systems. While deep learning has demonstrated potential, many current models struggle with limited accuracy and lack of interpretability. This research introduces the Deep Neural Breast Cancer Detection (DNBCD) model, an explainable AI-based framework that utilizes deep learning methods for classifying breast cancer using histopathological and ultrasound images. The proposed model employs Densenet121 as a foundation, integrating customized Convolutional Neural Network (CNN) layers including GlobalAveragePooling2D, Dense, and Dropout layers along with transfer learning to achieve both high accuracy and interpretability for breast cancer diagnosis. The proposed DNBCD model integrates several preprocessing techniques, including image normalization and resizing, and augmentation techniques to enhance the model's robustness and address class imbalances using class weight. It employs Grad-CAM (Gradient-weighted Class Activation Mapping) to offer visual justifications for its predictions, increasing trust and transparency among healthcare providers. The model was assessed using two benchmark datasets: Breakhis-400x (B-400x) and Breast Ultrasound Images Dataset (BUSI) containing 1820 and 1578 images, respectively. We systematically divided the datasets into training (70%), testing (20%,) and validation (10%) sets, ensuring efficient model training and evaluation obtaining accuracies of 93.97% for B-400x dataset having benign and malignant classes and 89.87% for BUSI dataset having benign, malignant, and normal classes for breast cancer detection. Experimental results demonstrate that the proposed DNBCD model significantly outperforms existing state-of-the-art approaches with potential uses in clinical environments. We also made all the materials publicly accessible for the research community at: https://github.com/romzanalom/XAI-Based-Deep-Neural-Breast-Cancer-Detection .

Detection of maxillary sinus pathologies using deep learning algorithms.

Aktuna Belgin C, Kurbanova A, Aksoy S, Akkaya N, Orhan K

pubmed logopapersMay 20 2025
Deep learning, a subset of machine learning, is widely utilized in medical applications. Identifying maxillary sinus pathologies before surgical interventions is crucial for ensuring successful treatment outcomes. Cone beam computed tomography (CBCT) is commonly employed for maxillary sinus evaluations due to its high resolution and lower radiation exposure. This study aims to assess the accuracy of artificial intelligence (AI) algorithms in detecting maxillary sinus pathologies from CBCT scans. A dataset comprising 1000 maxillary sinuses (MS) from 500 patients was analyzed using CBCT. Sinuses were categorized based on the presence or absence of pathology, followed by segmentation of the maxillary sinus. Manual segmentation masks were generated using the semiautomatic software ITK-SNAP, which served as a reference for comparison. A convolutional neural network (CNN)-based machine learning model was then implemented to automatically segment maxillary sinus pathologies from CBCT images. To evaluate segmentation accuracy, metrics such as the Dice similarity coefficient (DSC) and intersection over union (IoU) were utilized by comparing AI-generated results with human-generated segmentations. The automated segmentation model achieved a Dice score of 0.923, a recall of 0.979, an IoU of 0.887, an F1 score of 0.970, and a precision of 0.963. This study successfully developed an AI-driven approach for segmenting maxillary sinus pathologies in CBCT images. The findings highlight the potential of this method for rapid and accurate clinical assessment of maxillary sinus conditions using CBCT imaging.

Mask of Truth: Model Sensitivity to Unexpected Regions of Medical Images.

Sourget T, Hestbek-Møller M, Jiménez-Sánchez A, Junchi Xu J, Cheplygina V

pubmed logopapersMay 20 2025
The development of larger models for medical image analysis has led to increased performance. However, it also affected our ability to explain and validate model decisions. Models can use non-relevant parts of images, also called spurious correlations or shortcuts, to obtain high performance on benchmark datasets but fail in real-world scenarios. In this work, we challenge the capacity of convolutional neural networks (CNN) to classify chest X-rays and eye fundus images while masking out clinically relevant parts of the image. We show that all models trained on the PadChest dataset, irrespective of the masking strategy, are able to obtain an area under the curve (AUC) above random. Moreover, the models trained on full images obtain good performance on images without the region of interest (ROI), even superior to the one obtained on images only containing the ROI. We also reveal a possible spurious correlation in the Chákṣu dataset while the performances are more aligned with the expectation of an unbiased model. We go beyond the performance analysis with the usage of the explainability method SHAP and the analysis of embeddings. We asked a radiology resident to interpret chest X-rays under different masking to complement our findings with clinical knowledge.
Page 410 of 4524519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.