Sort by:
Page 41 of 42417 results

Weakly supervised language models for automated extraction of critical findings from radiology reports.

Das A, Talati IA, Chaves JMZ, Rubin D, Banerjee I

pubmed logopapersMay 8 2025
Critical findings in radiology reports are life threatening conditions that need to be communicated promptly to physicians for timely management of patients. Although challenging, advancements in natural language processing (NLP), particularly large language models (LLMs), now enable the automated identification of key findings from verbose reports. Given the scarcity of labeled critical findings data, we implemented a two-phase, weakly supervised fine-tuning approach on 15,000 unlabeled Mayo Clinic reports. This fine-tuned model then automatically extracted critical terms on internal (Mayo Clinic, n = 80) and external (MIMIC-III, n = 123) test datasets, validated against expert annotations. Model performance was further assessed on 5000 MIMIC-IV reports using LLM-aided metrics, G-eval and Prometheus. Both manual and LLM-based evaluations showed improved task alignment with weak supervision. The pipeline and model, publicly available under an academic license, can aid in critical finding extraction for research and clinical use ( https://github.com/dasavisha/CriticalFindings_Extract ).

Impact of the recent advances in coronary artery disease imaging on pilot medical certification and aviation safety: current state and future perspective.

Benjamin MM, Rabbat MG, Park W, Benjamin M, Davenport E

pubmed logopapersMay 7 2025
Coronary artery disease (CAD) is highly prevalent among pilots due to the nature of their lifestyle, and occupational stresses. CAD is one the most common conditions affecting pilots' medical certification and is frequently nondisclosed by pilots fearing the loss of their certification. Traditional screening methods, such as resting electrocardiograms (EKGs) and functional stress tests, have limitations, especially in detecting non-obstructive CAD. Recent advances in cardiac imaging are challenging the current paradigms of CAD screening and risk assessment protocols, offering tools uniquely suited to address the occupational health challenges faced by pilots. Coronary artery calcium scoring (CACS) has proven valuable in refining risk stratification in asymptomatic individuals. Coronary computed tomography angiography (CCTA), is being increasingly adopted as a superior tool for ruling out CAD in symptomatic individuals, assessing plaque burden as well as morphologically identifying vulnerable plaque. CT-derived fractional flow reserve (CT-FFR) adds a physiologic component to the anatomical prowess of CCTA. Cardiac magnetic resonance imaging (CMR) is now used as a prognosticating tool following a coronary event as well as a stress testing modality. Investigational technologies like pericoronary fat attenuation and artificial intelligence (AI)-enabled plaque quantification hold the promise of enhancing diagnostic accuracy and risk stratification. This review highlights the interplay between occupational demands, regulatory considerations, and the limitations of the traditional modalities for pilot CAD screening and surveillance. We also discuss the potential role of the recent advances in cardiac imaging in optimizing pilot health and flight safety.

Enhancing efficient deep learning models with multimodal, multi-teacher insights for medical image segmentation.

Hossain KF, Kamran SA, Ong J, Tavakkoli A

pubmed logopapersMay 7 2025
The rapid evolution of deep learning has dramatically enhanced the field of medical image segmentation, leading to the development of models with unprecedented accuracy in analyzing complex medical images. Deep learning-based segmentation holds significant promise for advancing clinical care and enhancing the precision of medical interventions. However, these models' high computational demand and complexity present significant barriers to their application in resource-constrained clinical settings. To address this challenge, we introduce Teach-Former, a novel knowledge distillation (KD) framework that leverages a Transformer backbone to effectively condense the knowledge of multiple teacher models into a single, streamlined student model. Moreover, it excels in the contextual and spatial interpretation of relationships across multimodal images for more accurate and precise segmentation. Teach-Former stands out by harnessing multimodal inputs (CT, PET, MRI) and distilling the final predictions and the intermediate attention maps, ensuring a richer spatial and contextual knowledge transfer. Through this technique, the student model inherits the capacity for fine segmentation while operating with a significantly reduced parameter set and computational footprint. Additionally, introducing a novel training strategy optimizes knowledge transfer, ensuring the student model captures the intricate mapping of features essential for high-fidelity segmentation. The efficacy of Teach-Former has been effectively tested on two extensive multimodal datasets, HECKTOR21 and PI-CAI22, encompassing various image types. The results demonstrate that our KD strategy reduces the model complexity and surpasses existing state-of-the-art methods to achieve superior performance. The findings of this study indicate that the proposed methodology could facilitate efficient segmentation of complex multimodal medical images, supporting clinicians in achieving more precise diagnoses and comprehensive monitoring of pathological conditions ( https://github.com/FarihaHossain/TeachFormer ).

Deep learning approaches for classification tasks in medical X-ray, MRI, and ultrasound images: a scoping review.

Laçi H, Sevrani K, Iqbal S

pubmed logopapersMay 7 2025
Medical images occupy the largest part of the existing medical information and dealing with them is challenging not only in terms of management but also in terms of interpretation and analysis. Hence, analyzing, understanding, and classifying them, becomes a very expensive and time-consuming task, especially if performed manually. Deep learning is considered a good solution for image classification, segmentation, and transfer learning tasks since it offers a large number of algorithms to solve such complex problems. PRISMA-ScR guidelines have been followed to conduct the scoping review with the aim of exploring how deep learning is being used to classify a broad spectrum of diseases diagnosed using an X-ray, MRI, or Ultrasound image modality.Findings contribute to the existing research by outlining the characteristics of the adopted datasets and the preprocessing or augmentation techniques applied to them. The authors summarized all relevant studies based on the deep learning models used and the accuracy achieved for classification. Whenever possible, they included details about the hardware and software configurations, as well as the architectural components of the models employed. Moreover, the models that achieved the highest accuracy in disease classification were highlighted, along with their strengths. The authors also discussed the limitations of the current approaches and proposed future directions for medical image classification.

Radiological evaluation and clinical implications of deep learning- and MRI-based synthetic CT for the assessment of cervical spine injuries.

Fischer G, Schlosser TPC, Dietrich TJ, Kim OC, Zdravkovic V, Martens B, Fehlings MG, Jans L, Vereecke E, Stienen MN, Hejrati N

pubmed logopapersMay 7 2025
Efficient evaluation of soft tissues and bony structures following cervical spine trauma is critical. We sought to evaluate the diagnostic validity of magnetic resonance imaging (MRI)-based synthetic CT (sCT) compared with conventional computed tomography (CT) for cervical spine injuries. In a prospective, multicenter study, patients with cervical spine injuries underwent CT and MRI within 48 h after injury. A panel of five clinicians independently reviewed the images for diagnostic accuracy, lesion characterization (AO Spine classification), and soft tissue trauma. Fracture visibility, anterior (AVH) and posterior wall height (PVH), vertebral body angle (VBA), segmental kyphosis (SK), with corresponding interobserver reliability (intraclass correlation coefficients (ICC)) and intermodal differences (Fleiss' Kappa), were recorded. The accuracy of estimating Hounsfield unit (HU) values and mean cortical surface distances were measured. Thirty-seven patients (44 cervical spine fractures) were enrolled. sCT demonstrated a sensitivity of 97.3% for visualizing fractures. Intermodal agreement regarding injury classification indicated almost perfect agreement (κ = 0.922; p < 0.001). Inter-reader ICCs were good to excellent (CT vs. sCT): AVH (0.88, 0.87); PVH (0.87, 0.88); VBA (0.78, 0.76); SK (0.77, 0.93). Intermodal agreement showed a mean absolute difference of 0.3 mm (AVH), 0.3 mm (PVH), 1.15° (VBA) and 0.51° (SK), respectively. MRI visualized additional soft tissue trauma in 56.8% of patients. Voxelwise comparisons of sCT showed good to excellent agreement with CT in terms of HUs (mean absolute error of 20 (SD ± 62)) and a mean absolute cortical surface distance of 0.45 mm (SD ± 0.13). sCT is a promising, radiation-free imaging technique for diagnosing cervical spine injuries with similar accuracy to CT. Question Assessing the accuracy of MRI-based synthetic CT (sCT) for fracture visualization and classification in comparison to the gold standard of CT for cervical spine injuries. Findings sCT demonstrated a 97.3% sensitivity in detecting fractures and exhibited near-perfect intermodal agreement in classifying injuries according to the AO Spine classification system. Clinical relevance sCT is a promising, radiation-free imaging modality that offers comparable accuracy to CT in visualizing and classifying cervical spine injuries. The combination of conventional MRI sequences for soft tissue evaluation with sCT reconstruction for bone visualization provides comprehensive diagnostic information.

Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models

Matthias Höfler, Francesco Regazzoni, Stefano Pagani, Elias Karabelas, Christoph Augustin, Gundolf Haase, Gernot Plank, Federica Caforio

arxiv logopreprintMay 6 2025
Active stress models in cardiac biomechanics account for the mechanical deformation caused by muscle activity, thus providing a link between the electrophysiological and mechanical properties of the tissue. The accurate assessment of active stress parameters is fundamental for a precise understanding of myocardial function but remains difficult to achieve in a clinical setting, especially when only displacement and strain data from medical imaging modalities are available. This work investigates, through an in-silico study, the application of physics-informed neural networks (PINNs) for inferring active contractility parameters in time-dependent cardiac biomechanical models from these types of imaging data. In particular, by parametrising the sought state and parameter field with two neural networks, respectively, and formulating an energy minimisation problem to search for the optimal network parameters, we are able to reconstruct in various settings active stress fields in the presence of noise and with a high spatial resolution. To this end, we also advance the vanilla PINN learning algorithm with the use of adaptive weighting schemes, ad-hoc regularisation strategies, Fourier features, and suitable network architectures. In addition, we thoroughly analyse the influence of the loss weights in the reconstruction of active stress parameters. Finally, we apply the method to the characterisation of tissue inhomogeneities and detection of fibrotic scars in myocardial tissue. This approach opens a new pathway to significantly improve the diagnosis, treatment planning, and management of heart conditions associated with cardiac fibrosis.

Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation

Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen

arxiv logopreprintMay 6 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.

Path and Bone-Contour Regularized Unpaired MRI-to-CT Translation

Teng Zhou, Jax Luo, Yuping Sun, Yiheng Tan, Shun Yao, Nazim Haouchine, Scott Raymond

arxiv logopreprintMay 6 2025
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.

From Pixels to Polygons: A Survey of Deep Learning Approaches for Medical Image-to-Mesh Reconstruction

Fengming Lin, Arezoo Zakeri, Yidan Xue, Michael MacRaild, Haoran Dou, Zherui Zhou, Ziwei Zou, Ali Sarrami-Foroushani, Jinming Duan, Alejandro F. Frangi

arxiv logopreprintMay 6 2025
Deep learning-based medical image-to-mesh reconstruction has rapidly evolved, enabling the transformation of medical imaging data into three-dimensional mesh models that are critical in computational medicine and in silico trials for advancing our understanding of disease mechanisms, and diagnostic and therapeutic techniques in modern medicine. This survey systematically categorizes existing approaches into four main categories: template models, statistical models, generative models, and implicit models. Each category is analysed in detail, examining their methodological foundations, strengths, limitations, and applicability to different anatomical structures and imaging modalities. We provide an extensive evaluation of these methods across various anatomical applications, from cardiac imaging to neurological studies, supported by quantitative comparisons using standard metrics. Additionally, we compile and analyze major public datasets available for medical mesh reconstruction tasks and discuss commonly used evaluation metrics and loss functions. The survey identifies current challenges in the field, including requirements for topological correctness, geometric accuracy, and multi-modality integration. Finally, we present promising future research directions in this domain. This systematic review aims to serve as a comprehensive reference for researchers and practitioners in medical image analysis and computational medicine.

Machine learning algorithms integrating positron emission tomography/computed tomography features to predict pathological complete response after neoadjuvant chemoimmunotherapy in lung cancer.

Sheng Z, Ji S, Chen Y, Mi Z, Yu H, Zhang L, Wan S, Song N, Shen Z, Zhang P

pubmed logopapersMay 6 2025
Reliable methods for predicting pathological complete response (pCR) in non-small cell lung cancer (NSCLC) patients undergoing neoadjuvant chemoimmunotherapy are still under exploration. Although Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) features reflect tumour response, their utility in predicting pCR remains controversial. This retrospective analysis included NSCLC patients who received neoadjuvant chemoimmunotherapy followed by 18F-FDG PET/CT imaging at Shanghai Pulmonary Hospital from October 2019 to August 2024. Eligible patients were randomly divided into training and validation cohort at a 7:3 ratio. Relevant 18F-FDG PET/CT features were evaluated as individual predictors and incorporated into 5 machine learning (ML) models. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), and Shapley additive explanation was applied for model interpretation. A total of 205 patients were included, with 91 (44.4%) achieving pCR. Post-treatment tumour maximum standardized uptake value (SUVmax) demonstrated the highest predictive performance among individual predictors, achieving an AUC of 0.72 (95% CI 0.65-0.79), while ΔT SUVmax achieved an AUC of 0.65 (95% CI 0.53-0.77). The Light Gradient Boosting Machine algorithm outperformed other models and individual predictors, achieving an average AUC of 0.87 (95% CI 0.78-0.97) in training cohort and 0.83 (95% CI 0.72-0.94) in validation cohort. Shapley additive explanation analysis identified post-treatment tumour SUVmax and post-treatment nodal volume as key contributors. This ML models offer a non-invasive and effective approach for predicting pCR after neoadjuvant chemoimmunotherapy in NSCLC.
Page 41 of 42417 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.