Sort by:
Page 40 of 72720 results

High-Performance Computing-Based Brain Tumor Detection Using Parallel Quantum Dilated Convolutional Neural Network.

Shinde SS, Pande A

pubmed logopapersJun 1 2025
In the healthcare field, brain tumor causes irregular development of cells in the brain. One of the popular ways to identify the brain tumor and its progression is magnetic resonance imaging (MRI). However, existing methods often suffer from high computational complexity, noise interference, and limited accuracy, which affect the early diagnosis of brain tumor. For resolving such issues, a high-performance computing model, such as big data-based detection, is utilized. As a result, this work proposes a novel approach named parallel quantum dilated convolutional neural network (PQDCNN)-based brain tumor detection using the Map-Reducer. The data partitioning is the prime process, which is done using the Fuzzy local information C-means clustering (FLICM). The partitioned data is subjected to the map reducer. In the mapper, the Medav filtering removes the noise, and the tumor area segmentation is done by a transformer model named TransBTSV2. After segmenting the tumor part, image augmentation and feature extraction are done. In the reducer phase, the brain tumor is detected using the proposed PQDCNN. Furthermore, the efficiency of PQDCNN is validated using the accuracy, sensitivity, and specificity metrics, and the ideal values of 91.52%, 91.69%, and 92.26% are achieved.

Fine-Tuning Deep Learning Model for Quantitative Knee Joint Mapping With MR Fingerprinting and Its Comparison to Dictionary Matching Method: Fine-Tuning Deep Learning Model for Quantitative MRF.

Zhang X, de Moura HL, Monga A, Zibetti MVW, Regatte RR

pubmed logopapersJun 1 2025
Magnetic resonance fingerprinting (MRF), as an emerging versatile and noninvasive imaging technique, provides simultaneous quantification of multiple quantitative MRI parameters, which have been used to detect changes in cartilage composition and structure in osteoarthritis. Deep learning (DL)-based methods for quantification mapping in MRF overcome the memory constraints and offer faster processing compared to the conventional dictionary matching (DM) method. However, limited attention has been given to the fine-tuning of neural networks (NNs) in DL and fair comparison with DM. In this study, we investigate the impact of training parameter choices on NN performance and compare the fine-tuned NN with DM for multiparametric mapping in MRF. Our approach includes optimizing NN hyperparameters, analyzing the singular value decomposition (SVD) components of MRF data, and optimization of the DM method. We conducted experiments on synthetic data, the NIST/ISMRM MRI system phantom with ground truth, and in vivo knee data from 14 healthy volunteers. The results demonstrate the critical importance of selecting appropriate training parameters, as these significantly affect NN performance. The findings also show that NNs improve the accuracy and robustness of T<sub>1</sub>, T<sub>2</sub>, and T<sub>1ρ</sub> mappings compared to DM in synthetic datasets. For in vivo knee data, the NN achieved comparable results for T<sub>1</sub>, with slightly lower T<sub>2</sub> and slightly higher T<sub>1ρ</sub> measurements compared to DM. In conclusion, the fine-tuned NN can be used to increase accuracy and robustness for multiparametric quantitative mapping from MRF of the knee joint.

A radiomics approach to distinguish Progressive Supranuclear Palsy Richardson's syndrome from other phenotypes starting from MR images.

Pisani N, Abate F, Avallone AR, Barone P, Cesarelli M, Amato F, Picillo M, Ricciardi C

pubmed logopapersJun 1 2025
Progressive Supranuclear Palsy (PSP) is an uncommon neurodegenerative disorder with different clinical onset, including Richardson's syndrome (PSP-RS) and other variant phenotypes (vPSP). Recognising the clinical progression of different phenotypes would enhance the accuracy of detection and treatment of PSP. The study goal was to identify radiomic biomarkers for distinguishing PSP phenotypes extracted from T1-weighted magnetic resonance images (MRI). Forty PSP patients (20 PSP-RS and 20 vPSP) took part in the present work. Radiomic features were collected from 21 regions of interest (ROIs) mainly from frontal cortex, supratentorial white matter, basal nuclei, brainstem, cerebellum, 3rd and 4th ventricles. After features selection, three tree-based machine learning (ML) classifiers were implemented to classify PSP phenotypes. 10 out of 21 ROIs performed best about sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUCROC). Particularly, features extracted from the pons region obtained the best accuracy (0.92) and AUCROC (0.83) values while by using the other 10 ROIs, evaluation metrics range from 0.67 to 0.83. Eight features of the Gray Level Dependence Matrix were recurrently extracted for the 10 ROIs. Furthermore, by combining these ROIs, the results exceeded 0.83 in phenotypes classification and the selected areas were brain stem, pons, occipital white matter, precentral gyrus and thalamus regions. Based on the achieved results, our proposed approach could represent a promising tool for distinguishing PSP-RS from vPSP.

Explainable deep stacking ensemble model for accurate and transparent brain tumor diagnosis.

Haque R, Khan MA, Rahman H, Khan S, Siddiqui MIH, Limon ZH, Swapno SMMR, Appaji A

pubmed logopapersJun 1 2025
Early detection of brain tumors in MRI images is vital for improving treatment results. However, deep learning models face challenges like limited dataset diversity, class imbalance, and insufficient interpretability. Most studies rely on small, single-source datasets and do not combine different feature extraction techniques for better classification. To address these challenges, we propose a robust and explainable stacking ensemble model for multiclass brain tumor classification. To address these challenges, we propose a stacking ensemble model that combines EfficientNetB0, MobileNetV2, GoogleNet, and Multi-level CapsuleNet, using CatBoost as the meta-learner for improved feature aggregation and classification accuracy. This ensemble approach captures complex tumor characteristics while enhancing robustness and interpretability. The proposed model integrates EfficientNetB0, MobileNetV2, GoogleNet, and a Multi-level CapsuleNet within a stacking framework, utilizing CatBoost as the meta-learner to improve feature aggregation and classification accuracy. We created two large MRI datasets by merging data from four sources: BraTS, Msoud, Br35H, and SARTAJ. To tackle class imbalance, we applied Borderline-SMOTE and data augmentation. We also utilized feature extraction methods, along with PCA and Gray Wolf Optimization (GWO). Our model was validated through confidence interval analysis and statistical tests, demonstrating superior performance. Error analysis revealed misclassification trends, and we assessed computational efficiency regarding inference speed and resource usage. The proposed ensemble achieved 97.81% F1 score and 98.75% PR AUC on M1, and 98.32% F1 score with 99.34% PR AUC on M2. Moreover, the model consistently surpassed state-of-the-art CNNs, Vision Transformers, and other ensemble methods in classifying brain tumors across individual four datasets. Finally, we developed a web-based diagnostic tool that enables clinicians to interact with the proposed model and visualize decision-critical regions in MRI scans using Explainable Artificial Intelligence (XAI). This study connects high-performing AI models with real clinical applications, providing a reliable, scalable, and efficient diagnostic solution for brain tumor classification.

Towards fast and reliable estimations of 3D pressure, velocity and wall shear stress in aortic blood flow: CFD-based machine learning approach.

Lin D, Kenjereš S

pubmed logopapersJun 1 2025
In this work, we developed deep neural networks for the fast and comprehensive estimation of the most salient features of aortic blood flow. These features include velocity magnitude and direction, 3D pressure, and wall shear stress. Starting from 40 subject-specific aortic geometries obtained from 4D Flow MRI, we applied statistical shape modeling to generate 1,000 synthetic aorta geometries. Complete computational fluid dynamics (CFD) simulations of these geometries were performed to obtain ground-truth values. We then trained deep neural networks for each characteristic flow feature using 900 randomly selected aorta geometries. Testing on remaining 100 geometries resulted in average errors of 3.11% for velocity and 4.48% for pressure. For wall shear stress predictions, we applied two approaches: (i) directly derived from the neural network-predicted velocity, and, (ii) predicted from a separate neural network. Both approaches yielded similar accuracy, with average error of 4.8 and 4.7% compared to complete 3D CFD results, respectively. We recommend the second approach for potential clinical use due to its significantly simplified workflow. In conclusion, this proof-of-concept analysis demonstrates the numerical robustness, rapid calculation speed (less than seconds), and good accuracy of the CFD-based machine learning approach in predicting velocity, pressure, and wall shear stress distributions in subject-specific aortic flows.

Res-Net-Based Modeling and Morphologic Analysis of Deep Medullary Veins Using Multi-Echo GRE at 7 T MRI.

Li Z, Liang L, Zhang J, Fan X, Yang Y, Yang H, Wang Q, An J, Xue R, Zhuo Y, Qian H, Zhang Z

pubmed logopapersJun 1 2025
The pathological changes in deep medullary veins (DMVs) have been reported in various diseases. However, accurate modeling and quantification of DMVs remain challenging. We aim to propose and assess an automated approach for modeling and quantifying DMVs at 7 Tesla (7 T) MRI. A multi-echo-input Res-Net was developed for vascular segmentation, and a minimum path loss function was used for modeling and quantifying the geometric parameter of DMVs. Twenty-one patients diagnosed as subcortical vascular dementia (SVaD) and 20 condition matched controls were included in this study. The amplitude and phase images of gradient echo with five echoes were acquired at 7 T. Ten GRE images were manually labeled by two neurologists and compared with the results obtained by our proposed method. Independent samples t test and Pearson correlation were used for statistical analysis in our study, and p value < 0.05 was considered significant. No significant offset was found in centerlines obtained by human labeling and our algorithm (p = 0.734). The length difference between the proposed method and manual labeling was smaller than the error between different clinicians (p < 0.001). Patients with SVaD exhibited fewer DMVs (mean difference = -60.710 ± 21.810, p = 0.011) and higher curvature (mean difference = 0.12 ± 0.022, p < 0.0001), corresponding to their higher Vascular Dementia Assessment Scale-Cog (VaDAS-Cog) scores (mean difference = 4.332 ± 1.992, p = 0.036) and lower Mini-Mental State Examination (MMSE) (mean difference = -3.071 ± 1.443, p = 0.047). The MMSE scores were positively correlated with the numbers of DMVs (r = 0.437, p = 0.037) and were negatively correlated with the curvature (r = -0.426, p = 0.042). In summary, we proposed a novel framework for automated quantifying the morphologic parameters of DMVs. These characteristics of DMVs are expected to help the research and diagnosis of cerebral small vessel diseases with DMV lesions.

A Pilot Study on Deep Learning With Simplified Intravoxel Incoherent Motion Diffusion-Weighted MRI Parameters for Differentiating Hepatocellular Carcinoma From Other Common Liver Masses.

Ratiphunpong P, Inmutto N, Angkurawaranon S, Wantanajittikul K, Suwannasak A, Yarach U

pubmed logopapersJun 1 2025
To develop and evaluate a deep learning technique for the differentiation of hepatocellular carcinoma (HCC) using "simplified intravoxel incoherent motion (IVIM) parameters" derived from only 3 b-value images. Ninety-eight retrospective magnetic resonance imaging data were collected (68 men, 30 women; mean age 59 ± 14 years), including T2-weighted imaging with fat suppression, in-phase, out-of-phase, and diffusion-weighted imaging (b = 0, 100, 800 s/mm2). Ninety percent of data were used for stratified 10-fold cross-validation. After data preprocessing, diffusion-weighted imaging images were used to compute simplified IVIM and apparent diffusion coefficient (ADC) maps. A 17-layer 3D convolutional neural network (3D-CNN) was implemented, and the input channels were modified for different strategies of input images. The 3D-CNN with IVIM maps (ADC, f, and D*) demonstrated superior performance compared with other strategies, achieving an accuracy of 83.25 ± 6.24% and area under the receiver-operating characteristic curve of 92.70 ± 8.24%, significantly surpassing the baseline of 50% (P < 0.05) and outperforming other strategies in all evaluation metrics. This success underscores the effectiveness of simplified IVIM parameters in combination with a 3D-CNN architecture for enhancing HCC differentiation accuracy. Simplified IVIM parameters derived from 3 b-values, when integrated with a 3D-CNN architecture, offer a robust framework for HCC differentiation.

MRI-based risk factors for intensive care unit admissions in acute neck infections.

Vierula JP, Merisaari H, Heikkinen J, Happonen T, Sirén A, Velhonoja J, Irjala H, Soukka T, Mattila K, Nyman M, Nurminen J, Hirvonen J

pubmed logopapersJun 1 2025
We assessed risk factors and developed a score to predict intensive care unit (ICU) admissions using MRI findings and clinical data in acute neck infections. This retrospective study included patients with MRI-confirmed acute neck infection. Abscess diameters were measured on post-gadolinium T1-weighted Dixon MRI, and specific edema patterns, retropharyngeal (RPE) and mediastinal edema, were assessed on fat-suppressed T2-weighted Dixon MRI. A multivariate logistic regression model identified ICU admission predictors, with risk scores derived from regression coefficients. Model performance was evaluated using the area under the curve (AUC) from receiver operating characteristic analysis. Machine learning models (random forest, XGBoost, support vector machine, neural networks) were tested. The sample included 535 patients, of whom 373 (70 %) had an abscess, and 62 (12 %) required ICU treatment. Significant predictors for ICU admission were RPE, maximal abscess diameter (≥40 mm), and C-reactive protein (CRP) (≥172 mg/L). The risk score (0-7) (AUC=0.82, 95 % confidence interval [CI] 0.77-0.88) outperformed CRP (AUC=0.73, 95 % CI 0.66-0.80, p = 0.001), maximal abscess diameter (AUC=0.72, 95 % CI 0.64-0.80, p < 0.001), and RPE (AUC=0.71, 95 % CI 0.65-0.77, p < 0.001). The risk score at a cut-off > 3 yielded the following metrics: sensitivity 66 %, specificity 82 %, positive predictive value 33 %, negative predictive value 95 %, accuracy 80 %, and odds ratio 9.0. Discriminative performance was robust in internal (AUC=0.83) and hold-out (AUC=0.81) validations. ML models were not better than regression models. A risk model incorporating RPE, abscess size, and CRP showed moderate accuracy and high negative predictive value for ICU admissions, supporting MRI's role in acute neck infections.

Whole Brain 3D T1 Mapping in Multiple Sclerosis Using Standard Clinical Images Compared to MP2RAGE and MR Fingerprinting.

Snyder J, Blevins G, Smyth P, Wilman AH

pubmed logopapersJun 1 2025
Quantitative T1 and T2 mapping is a useful tool to assess properties of healthy and diseased tissues. However, clinical diagnostic imaging remains dominated by relaxation-weighted imaging without direct collection of relaxation maps. Dedicated research sequences such as MR fingerprinting can save time and improve resolution over classical gold standard quantitative MRI (qMRI) methods, although they are not widely adopted in clinical studies. We investigate the use of clinical sequences in conjunction with prior knowledge provided by machine learning to elucidate T1 maps of brain in routine imaging studies without the need for specialized sequences. A classification learner was trained on T1w (magnetization prepared rapid gradient echo [MPRAGE]) and T2w (fluid-attenuated inversion recovery [FLAIR]) data (2.6 million voxels) from multiple sclerosis (MS) patients at 3T, compared to gold standard inversion recovery fast spin echo T1 maps in five healthy subjects, and tested on eight MS patients. In the MS patient test, the results of the machine learner-produced T1 maps were compared to MP2RAGE and MR fingerprinting T1 maps in seven tissue regions of the brain: cortical grey matter, white matter, cerebrospinal fluid, caudate, putamen and globus pallidus. Additionally, T1s in lesion-segmented tissue was compared using the three different methods. The machine learner (ML) method had excellent agreement with MP2RAGE, with all average tissue deviations less than 3.2%, with T1 lesion variation of 0.1%-5.3% across the eight patients. The machine learning method provides a valuable and accurate estimation of T1 values in the human brain while using data from standard clinical sequences and allowing retrospective reconstruction from past studies without the need for new quantitative techniques.

Artificial intelligence-assisted magnetic resonance lymphography for evaluation of micro- and macro-sentinel lymph node metastasis in breast cancer.

Yang Z, Ling J, Sun W, Pan C, Chen T, Dong C, Zhou X, Zhang J, Zheng J, Ma X

pubmed logopapersJun 1 2025
Contrast-enhanced magnetic resonance lymphography (CE-MRL) plays a crucial role in preoperative diagnostic for evaluating tumor metastatic sentinel lymph node (T-SLN), by integrating detailed lymphatic information about lymphatic anatomy and drainage function from MR images. However, the clinical gadolinium-based contrast agents for identifying T-SLN is seriously limited, owing to their small molecular structure and rapid diffusion into the bloodstream. Herein, we propose a novel albumin-modified manganese-based nanoprobes enhanced MRL method for accurately assessing micro- and macro-T-SLN. Specifically, the inherent concentration gradient of albumin between blood and interstitial fluid aids in the movement of nanoprobes into the lymphatic system. The micro-T-SLN exhibits a notably higher MR signal due to the formation of new lymphatic vessels and increased lymphatic flow, allowing for a greater influx of nanoprobes. In contrast, the macro-T-SLN shows a lower MR signal as a result of tumor cell proliferation and damage to the lymphatic vessels. Additionally, a highly accurate and sensitive machine learning model has been developed to guide the identification of micro- and macro-T-SLN by analyzing manganese-enhanced MR images. In conclusion, our research presents a novel comprehensive assessment framework utilizing albumin-modified manganese-based nanoprobes for a highly sensitive evaluation of micro- and macro-T-SLN in breast cancer.
Page 40 of 72720 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.