A Pilot Study on Deep Learning With Simplified Intravoxel Incoherent Motion Diffusion-Weighted MRI Parameters for Differentiating Hepatocellular Carcinoma From Other Common Liver Masses.
Authors
Affiliations (3)
Affiliations (3)
- Department of Radiologic Technology, Faculty of Associated Medical Science, Chiang Mai University, Chiang Mai, Thailand.
- Radiological Technology School, Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand; and.
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
Abstract
To develop and evaluate a deep learning technique for the differentiation of hepatocellular carcinoma (HCC) using "simplified intravoxel incoherent motion (IVIM) parameters" derived from only 3 b-value images. Ninety-eight retrospective magnetic resonance imaging data were collected (68 men, 30 women; mean age 59 ± 14 years), including T2-weighted imaging with fat suppression, in-phase, out-of-phase, and diffusion-weighted imaging (b = 0, 100, 800 s/mm2). Ninety percent of data were used for stratified 10-fold cross-validation. After data preprocessing, diffusion-weighted imaging images were used to compute simplified IVIM and apparent diffusion coefficient (ADC) maps. A 17-layer 3D convolutional neural network (3D-CNN) was implemented, and the input channels were modified for different strategies of input images. The 3D-CNN with IVIM maps (ADC, f, and D*) demonstrated superior performance compared with other strategies, achieving an accuracy of 83.25 ± 6.24% and area under the receiver-operating characteristic curve of 92.70 ± 8.24%, significantly surpassing the baseline of 50% (P < 0.05) and outperforming other strategies in all evaluation metrics. This success underscores the effectiveness of simplified IVIM parameters in combination with a 3D-CNN architecture for enhancing HCC differentiation accuracy. Simplified IVIM parameters derived from 3 b-values, when integrated with a 3D-CNN architecture, offer a robust framework for HCC differentiation.