Sort by:
Page 40 of 3523516 results

Artificial intelligence with feature fusion empowered enhanced brain stroke detection and classification for disabled persons using biomedical images.

Alsieni M, Alyoubi KH

pubmed logopapersAug 9 2025
Brain stroke is an illness which affects almost every age group, particularly people over 65. There are two significant kinds of strokes: ischemic and hemorrhagic strokes. Blockage of brain vessels causes an ischemic stroke, while cracks in blood vessels in or around the brain cause a hemorrhagic stroke. In the prompt analysis of brain stroke, patients can live an easier life. Recognizing strokes using medical imaging is crucial for early diagnosis and treatment planning. Conversely, access to innovative imaging methods is restricted, particularly in emerging states, so it is challenging to analyze brain stroke cases of disabled people appropriately. Hence, the development of more accurate, faster, and more reliable diagnostic models for the timely recognition and efficient treatment of ischemic stroke is greatly needed. Artificial intelligence technologies, primarily deep learning (DL), have been widely employed in medical imaging, utilizing automated detection methods. This paper presents an Enhanced Brain Stroke Detection and Classification using Artificial Intelligence with Feature Fusion Technologies (EBSDC-AIFFT) model. This paper aims to develop an enhanced brain stroke detection system for individuals with disabilities, utilizing biomedical images to improve diagnostic accuracy. Initially, the image pre-processing stage involves various steps, including resizing, normalization, data augmentation, and data splitting, to enhance image quality. In addition, the EBSDC-AIFFT model combines the Inception-ResNet-v2 model, the convolutional block attention module-ResNet18 method, and the multi-axis vision transformer technique for feature extraction. Finally, the variational autoencoder (VAE) model is implemented for the classification process. The performance validation of the EBSDC-AIFFT technique is performed under the brain stroke CT image dataset. The comparison study of the EBSDC-AIFFT technique demonstrated a superior accuracy value of 99.09% over existing models.

Deep Learning-aided <sup>1</sup>H-MR Spectroscopy for Differentiating between Patients with and without Hepatocellular Carcinoma.

Bae JS, Lee HH, Kim H, Song IC, Lee JY, Han JK

pubmed logopapersAug 9 2025
Among patients with hepatitis B virus-associated liver cirrhosis (HBV-LC), there may be differences in the hepatic parenchyma between those with and without hepatocellular carcinoma (HCC). Proton MR spectroscopy (<sup>1</sup>H-MRS) is a well-established tool for noninvasive metabolomics, but has been challenging in the liver allowing only a few metabolites to be detected other than lipids. This study aims to explore the potential of <sup>1</sup>H-MRS of the liver in conjunction with deep learning to differentiate between HBV-LC patients with and without HCC. Between August 2018 and March 2021, <sup>1</sup>H-MRS data were collected from 37 HBV-LC patients who underwent MRI for HCC surveillance, without HCC (HBV-LC group, n = 20) and with HCC (HBV-LC-HCC group, n = 17). Based on a priori knowledge from the first 10 patients from each group, big spectral datasets were simulated to develop 2 kinds of convolutional neural networks (CNNs): CNNs quantifying 15 metabolites and 5 lipid resonances (qCNNs) and CNNs classifying patients into HBV-LC and HBV-LC-HCC (cCNNs). The performance of the cCNNs was assessed using the remaining patients in the 2 groups (10 HBV-LC and 7 HBV-LC-HCC patients). Using a simulated dataset, the quantitative errors with the qCNNs were significantly lower than those with a conventional nonlinear-least-squares-fitting method for all metabolites and lipids (P ≤0.004). The cCNNs exhibited sensitivity, specificity, and accuracy of 100% (7/7), 90% (9/10), and 94% (16/17), respectively, for identifying the HBV-LC-HCC group. Deep-learning-aided <sup>1</sup>H-MRS with data augmentation by spectral simulation may have potential in differentiating between HBV-LC patients with and without HCC.

Self-supervised disc and cup segmentation via non-local deformable convolution and adaptive transformer.

Zhao W, Wang Y

pubmed logopapersAug 9 2025
Optic disc and cup segmentation is a crucial subfield of computer vision, playing a pivotal role in automated pathological image analysis. It enables precise, efficient, and automated diagnosis of ocular conditions, significantly aiding clinicians in real-world medical applications. However, due to the scarcity of medical segmentation data and the insufficient integration of global contextual information, the segmentation accuracy remains suboptimal. This issue becomes particularly pronounced in optic disc and cup cases with complex anatomical structures and ambiguous boundaries.In order to address these limitations, this paper introduces a self-supervised training strategy integrated with a newly designed network architecture to improve segmentation accuracy.Specifically,we initially propose a non-local dual deformable convolutional block,which aims to capture the irregular image patterns(i.e. boundary).Secondly,we modify the traditional vision transformer and design an adaptive K-Nearest Neighbors(KNN) transformation block to extract the global semantic context from images. Finally,an initialization strategy based on self-supervised training is proposed to reduce the burden on the network on labeled data.Comprehensive experimental evaluations demonstrate the effectiveness of our proposed method, which outperforms previous networks and achieves state-of-the-art performance,with IOU scores of 0.9577 for the optic disc and 0.8399 for the optic cup on the REFUGE dataset.

Kidney volume after endovascular exclusion of abdominal aortic aneurysms by EVAR and FEVAR.

B S, C V, Turkia J B, Weydevelt E V, R P, F L, A K

pubmed logopapersAug 9 2025
Decreased kidney volume is a sign of renal aging and/or decreased vascularization. The aim of this study was to determine whether renal volume changes 24 months after exclusion of an abdominal aortic aneurysm (AAA), and to compare fenestrated (FEVAR) and subrenal (EVAR) stents. Retrospective single-center study from a prospective registry, including patients between 60 and 80 years with normal preoperative renal function (eGFR≥60 ml/min/1.73 m<sup>-2</sup>) who underwent fenestrated (FEVAR) or infrarenal (EVAR) stent grafts between 2015 and 2021. Patients had to have had an CT scan at 24 months of the study to be included. Exclusion criteria were renal branches, the presence of preoperative renal insufficiency, a single kidney, embolization or coverage of an accessory renal artery, occlusion of a renal artery during follow-up and mention of AAA rupture. Renal volume was measured using sizing software (EndoSize, therenva) based on fully automatic deep-learning segmentation of several anatomical structures (arterial lumen, bone structure, thrombus, heart, etc.), including the kidneys. In the presence of renal cysts, these were manually excluded from the segmentation. Forty-eight patients were included (24 EVAR vs. 24 FEVAR), 96 kidneys were segmented. There was no difference between groups in age (78.9±6.7 years vs. 69.4±6.8, p=0.89), eGFR 85.8 ± 12.4 [62-107] ml/min/1.73 m<sup>-2</sup> vs. 81 ± 16.2 [42-107] (p=0.36), and renal volume 170.9 ± 29.7 [123-276] mL vs. 165.3 ± 37.4 [115-298] (p=0.12). At 24 months in the EVAR group, there was a non-significant reduction in eGFR 84.1 ± 17.2 [61-128] ml/min/1.73 m<sup>-2</sup> vs. 81 ± 16.2 [42-107] (p=0.36) or renal volume 170.9 ± 29.7 [123-276] mL vs. 165.3 ± 37.4 [115-298] (p=0.12). In the FEVAR group, at 24 months there was a non-significant fall in eGFR 84.1 ± 17.2 [61-128] ml/min/1.73 m<sup>-2</sup> vs. 73.8 ± 21.4 [40-110] (p=0.09), while renal volume decreased significantly 182 ± 37.8 [123-293] mL vs. 158.9 ± 40.2 [45-258] (p=0.007). In this study, there appears to be a significant decrease in renal volume without a drop in eGFR 24 months after fenestrated stenting. This decrease may reflect changes in renal perfusion and could potentially be predictive of long-term renal impairment, although this cannot be confirmed within the limits of this small sample. Further studies with long-term follow-up are needed.

Quantitative radiomic analysis of computed tomography scans using machine and deep learning techniques accurately predicts histological subtypes of non-small cell lung cancer: A retrospective analysis.

Panchawagh S, Halder A, Haldule S, Sanker V, Lalwani D, Sequeria R, Naik H, Desai A

pubmed logopapersAug 9 2025
Non-small cell lung cancer (NSCLC) histological subtypes impact treatment decisions. While pre-surgical histopathological examination is ideal, it's not always possible. CT radiomic analysis shows promise in predicting NSCLC histological subtypes. To predict NSCLC histological subtypes using machine learning and deep learning models using Radiomic features. 422 lung CT scans from The Cancer Imaging Archive (TCIA) were analyzed. Primary neoplasms were segmented by expert radiologists. Using PyRadiomics, 2446 radiomic features were extracted; post-selection, 179 features remained. Machine learning models like logistic regression (LR), Support vector machine (SVM), Random Forest (RF), XGBoost, LightGBM, and CatBoost were employed, alongside a deep neural network (DNN) model. RF demonstrated the highest accuracy at 78 % (95 % CI: 70 %-84 %) and AUC-ROC at 94 % (95 % CI: 90 %-96 %). LightGBM, XGBoost, and CatBoost had AUC-ROC values of 95 %, 93 %, and 93 % respectively. The DNN's AUC was 94.4 % (95 % CI: 94.1 %-94.6 %). Logistic regression had the least efficacy. For histological subtype prediction, random forest, boosting models, and DNN were superior. Quantitative radiomic analysis with machine learning can accurately determine NSCLC histological subtypes. Random forest, ensemble models, and DNNs show significant promise for pre-operative NSCLC classification, which can streamline therapy decisions.

SamRobNODDI: q-space sampling-augmented continuous representation learning for robust and generalized NODDI.

Xiao T, Cheng J, Fan W, Dong E, Wang S

pubmed logopapersAug 8 2025
Neurite Orientation Dispersion and Density Imaging (NODDI) microstructure estimation from diffusion magnetic resonance imaging (dMRI) is of great significance for the discovery and treatment of various neurological diseases. Current deep learning-based methods accelerate the speed of NODDI parameter estimation and improve the accuracy. However, most methods require the number and coordinates of gradient directions during testing and training to remain strictly consistent, significantly limiting the generalization and robustness of these models in NODDI parameter estimation. Therefore, it is imperative to develop methods that can perform robustly under varying diffusion gradient directions. In this paper, we propose a q-space sampling augmentation-based continuous representation learning framework (SamRobNODDI) to achieve robust and generalized NODDI. Specifically, a continuous representation learning method based on q-space sampling augmentation is introduced to fully explore the information between different gradient directions in q- space. Furthermore, we design a sampling consistency loss to constrain the outputs of different sampling schemes, ensuring that the outputs remain as consistent as possible, thereby further enhancing performance and robustness to varying q-space sampling schemes. SamRobNODDI is also a flexible framework that can be applied to different backbone networks. SamRobNODDI was compared against seven state-of-the-art methods across 18 diverse q-space sampling schemes. Extensive experimental validations have been conducted under both identical and diverse sampling schemes for training and testing, as well as across varying sampling rates, different loss functions, and multiple network backbones. Results demonstrate that the proposed SamRobNODDI has better performance, robustness, generalization, and flexibility in the face of varying q-space sampling schemes.&#xD.

Transformer-Based Explainable Deep Learning for Breast Cancer Detection in Mammography: The MammoFormer Framework

Ojonugwa Oluwafemi Ejiga Peter, Daniel Emakporuena, Bamidele Dayo Tunde, Maryam Abdulkarim, Abdullahi Bn Umar

arxiv logopreprintAug 8 2025
Breast cancer detection through mammography interpretation remains difficult because of the minimal nature of abnormalities that experts need to identify alongside the variable interpretations between readers. The potential of CNNs for medical image analysis faces two limitations: they fail to process both local information and wide contextual data adequately, and do not provide explainable AI (XAI) operations that doctors need to accept them in clinics. The researcher developed the MammoFormer framework, which unites transformer-based architecture with multi-feature enhancement components and XAI functionalities within one framework. Seven different architectures consisting of CNNs, Vision Transformer, Swin Transformer, and ConvNext were tested alongside four enhancement techniques, including original images, negative transformation, adaptive histogram equalization, and histogram of oriented gradients. The MammoFormer framework addresses critical clinical adoption barriers of AI mammography systems through: (1) systematic optimization of transformer architectures via architecture-specific feature enhancement, achieving up to 13% performance improvement, (2) comprehensive explainable AI integration providing multi-perspective diagnostic interpretability, and (3) a clinically deployable ensemble system combining CNN reliability with transformer global context modeling. The combination of transformer models with suitable feature enhancements enables them to achieve equal or better results than CNN approaches. ViT achieves 98.3% accuracy alongside AHE while Swin Transformer gains a 13.0% advantage through HOG enhancements

Towards MR-Based Trochleoplasty Planning

Michael Wehrli, Alicia Durrer, Paul Friedrich, Sidaty El Hadramy, Edwin Li, Luana Brahaj, Carol C. Hasler, Philippe C. Cattin

arxiv logopreprintAug 8 2025
To treat Trochlear Dysplasia (TD), current approaches rely mainly on low-resolution clinical Magnetic Resonance (MR) scans and surgical intuition. The surgeries are planned based on surgeons experience, have limited adoption of minimally invasive techniques, and lead to inconsistent outcomes. We propose a pipeline that generates super-resolved, patient-specific 3D pseudo-healthy target morphologies from conventional clinical MR scans. First, we compute an isotropic super-resolved MR volume using an Implicit Neural Representation (INR). Next, we segment femur, tibia, patella, and fibula with a multi-label custom-trained network. Finally, we train a Wavelet Diffusion Model (WDM) to generate pseudo-healthy target morphologies of the trochlear region. In contrast to prior work producing pseudo-healthy low-resolution 3D MR images, our approach enables the generation of sub-millimeter resolved 3D shapes compatible for pre- and intraoperative use. These can serve as preoperative blueprints for reshaping the femoral groove while preserving the native patella articulation. Furthermore, and in contrast to other work, we do not require a CT for our pipeline - reducing the amount of radiation. We evaluated our approach on 25 TD patients and could show that our target morphologies significantly improve the sulcus angle (SA) and trochlear groove depth (TGD). The code and interactive visualization are available at https://wehrlimi.github.io/sr-3d-planning/.

GPT-4 vs. Radiologists: who advances mediastinal tumor classification better across report quality levels? A cohort study.

Wen R, Li X, Chen K, Sun M, Zhu C, Xu P, Chen F, Ji C, Mi P, Li X, Deng X, Yang Q, Song W, Shang Y, Huang S, Zhou M, Wang J, Zhou C, Chen W, Liu C

pubmed logopapersAug 8 2025
Accurate mediastinal tumor classification is crucial for treatment planning, but diagnostic performance varies with radiologists' experience and report quality. To evaluate GPT-4's diagnostic accuracy in classifying mediastinal tumors from radiological reports compared to radiologists of different experience levels using radiological reports of varying quality. We conducted a retrospective study of 1,494 patients from five tertiary hospitals with mediastinal tumors diagnosed via chest CT and pathology. Radiological reports were categorized into low-, medium-, and high-quality based on predefined criteria assessed by experienced radiologists. Six radiologists (two residents, two attending radiologists, and two associate senior radiologists) and GPT-4 evaluated the chest CT reports. Diagnostic performance was analyzed overall, by report quality, and by tumor type using Wald χ2 tests and 95% CIs calculated via the Wilson method. GPT-4 achieved an overall diagnostic accuracy of 73.3% (95% CI: 71.0-75.5), comparable to associate senior radiologists (74.3%, 95% CI: 72.0-76.5; p >0.05). For low-quality reports, GPT-4 outperformed associate senior radiologists (60.8% vs. 51.1%, p<0.001). In high-quality reports, GPT-4 was comparable to attending radiologists (80.6% vs.79.4%, p>0.05). Diagnostic performance varied by tumor type: GPT-4 was comparable to radiology residents for neurogenic tumors (44.9% vs. 50.3%, p>0.05), similar to associate senior radiologists for teratomas (68.1% vs. 65.9%, p>0.05), and superior in diagnosing lymphoma (75.4% vs. 60.4%, p<0.001). GPT-4 demonstrated interpretation accuracy comparable to Associate Senior Radiologists, excelling in low-quality reports and outperforming them in diagnosing lymphoma. These findings underscore GPT-4's potential to enhance diagnostic performance in challenging diagnostic scenarios.

Synthesized myelin and iron stainings from 7T multi-contrast MRI via deep learning.

Pittayapong S, Hametner S, Bachrata B, Endmayr V, Bogner W, Höftberger R, Grabner G

pubmed logopapersAug 8 2025
Iron and myelin are key biomarkers for studying neurodegenerative and demyelinating brain diseases. Multi-contrast MRI techniques, such as R2* and QSM, are commonly used for iron assessment, with histology as the reference standard, but non-invasive myelin assessment remains challenging. To address this, we developed a deep learning model to generate iron and myelin staining images from in vivo multi-contrast MRI data, with a resolution comparable to ex vivo histology macro-scans. A cadaver head was scanned using a 7T MR scanner to acquire T1-weighted and multi-echo GRE data for R2*, and QSM processing, followed by histological staining for myelin and iron. To evaluate the generalizability of the model, a second cadaver head and two in vivo MRI datasets were included. After MRI-to-histology registration in the training subject, a self-attention generative adversarial network (GAN) was trained to synthesize myelin and iron staining images using various combinations of MRI contrast. The model achieved optimal myelin prediction when combining T1w, R2*, and QSM images. Incorporating the synthesized myelin images improved the subsequent prediction of iron staining. The generated images displayed fine details similar to those in histology data and demonstrated generalizability across healthy control subjects. Synthesized myelin images clearly differentiated myelin concentration between white and gray matter, while synthesized iron staining presented distinct patterns such as particularly high deposition in deep gray matter. This study shows that deep learning can transform MRI data into histological feature images, offering ex vivo insights from in vivo data and contributing to advancements in brain histology research.
Page 40 of 3523516 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.