Sort by:
Page 4 of 90894 results

Prediction of cervical cancer lymph node metastasis based on multisequence magnetic resonance imaging radiomics and deep learning features: a dual-center study.

Luo S, Guo Y, Ye Y, Mu Q, Huang W, Tang G

pubmed logopapersAug 10 2025
Cervical cancer is a leading cause of death from malignant tumors in women, and accurate evaluation of occult lymph node metastasis (OLNM) is crucial for optimal treatment. This study aimed to develop several predictive models-including Clinical model, Radiomics models (RD), Deep Learning models (DL), Radiomics-Deep Learning fusion models (RD-DL), and a Clinical-RD-DL combined model-for assessing the risk of OLNM in cervical cancer patients.The study included 130 patients from Center 1 (training set) and 55 from Center 2 (test set). Clinical data and imaging sequences (T1, T2, and DWI) were used to extract features for model construction. Model performance was assessed using the DeLong test, and SHAP analysis was used to examine feature contributions. Results showed that both the RD-combined (AUC = 0.803) and DL-combined (AUC = 0.818) models outperformed single-sequence models as well as the standalone Clinical model (AUC = 0.702). The RD-DL model yielded the highest performance, achieving an AUC of 0.981 in the training set and 0.903 in the test set. Notably, integrating clinical variables did not further improve predictive performance; the Clinical-RD-DL model performed comparably to the RD-DL model. SHAP analysis showed that deep learning features had the greatest impact on model predictions. Both RD and DL models effectively predict OLNM, with the RD-DL model offering superior performance. These findings provide a rapid, non-invasive clinical prediction method.

Large-scale Multi-sequence Pretraining for Generalizable MRI Analysis in Versatile Clinical Applications

Zelin Qiu, Xi Wang, Zhuoyao Xie, Juan Zhou, Yu Wang, Lingjie Yang, Xinrui Jiang, Juyoung Bae, Moo Hyun Son, Qiang Ye, Dexuan Chen, Rui Zhang, Tao Li, Neeraj Ramesh Mahboobani, Varut Vardhanabhuti, Xiaohui Duan, Yinghua Zhao, Hao Chen

arxiv logopreprintAug 10 2025
Multi-sequence Magnetic Resonance Imaging (MRI) offers remarkable versatility, enabling the distinct visualization of different tissue types. Nevertheless, the inherent heterogeneity among MRI sequences poses significant challenges to the generalization capability of deep learning models. These challenges undermine model performance when faced with varying acquisition parameters, thereby severely restricting their clinical utility. In this study, we present PRISM, a foundation model PRe-trained with large-scale multI-Sequence MRI. We collected a total of 64 datasets from both public and private sources, encompassing a wide range of whole-body anatomical structures, with scans spanning diverse MRI sequences. Among them, 336,476 volumetric MRI scans from 34 datasets (8 public and 26 private) were curated to construct the largest multi-organ multi-sequence MRI pretraining corpus to date. We propose a novel pretraining paradigm that disentangles anatomically invariant features from sequence-specific variations in MRI, while preserving high-level semantic representations. We established a benchmark comprising 44 downstream tasks, including disease diagnosis, image segmentation, registration, progression prediction, and report generation. These tasks were evaluated on 32 public datasets and 5 private cohorts. PRISM consistently outperformed both non-pretrained models and existing foundation models, achieving first-rank results in 39 out of 44 downstream benchmarks with statistical significance improvements. These results underscore its ability to learn robust and generalizable representations across unseen data acquired under diverse MRI protocols. PRISM provides a scalable framework for multi-sequence MRI analysis, thereby enhancing the translational potential of AI in radiology. It delivers consistent performance across diverse imaging protocols, reinforcing its clinical applicability.

Self-supervised disc and cup segmentation via non-local deformable convolution and adaptive transformer.

Zhao W, Wang Y

pubmed logopapersAug 9 2025
Optic disc and cup segmentation is a crucial subfield of computer vision, playing a pivotal role in automated pathological image analysis. It enables precise, efficient, and automated diagnosis of ocular conditions, significantly aiding clinicians in real-world medical applications. However, due to the scarcity of medical segmentation data and the insufficient integration of global contextual information, the segmentation accuracy remains suboptimal. This issue becomes particularly pronounced in optic disc and cup cases with complex anatomical structures and ambiguous boundaries.In order to address these limitations, this paper introduces a self-supervised training strategy integrated with a newly designed network architecture to improve segmentation accuracy.Specifically,we initially propose a non-local dual deformable convolutional block,which aims to capture the irregular image patterns(i.e. boundary).Secondly,we modify the traditional vision transformer and design an adaptive K-Nearest Neighbors(KNN) transformation block to extract the global semantic context from images. Finally,an initialization strategy based on self-supervised training is proposed to reduce the burden on the network on labeled data.Comprehensive experimental evaluations demonstrate the effectiveness of our proposed method, which outperforms previous networks and achieves state-of-the-art performance,with IOU scores of 0.9577 for the optic disc and 0.8399 for the optic cup on the REFUGE dataset.

OctreeNCA: Single-Pass 184 MP Segmentation on Consumer Hardware

Nick Lemke, John Kalkhof, Niklas Babendererde, Anirban Mukhopadhyay

arxiv logopreprintAug 9 2025
Medical applications demand segmentation of large inputs, like prostate MRIs, pathology slices, or videos of surgery. These inputs should ideally be inferred at once to provide the model with proper spatial or temporal context. When segmenting large inputs, the VRAM consumption of the GPU becomes the bottleneck. Architectures like UNets or Vision Transformers scale very poorly in VRAM consumption, resulting in patch- or frame-wise approaches that compromise global consistency and inference speed. The lightweight Neural Cellular Automaton (NCA) is a bio-inspired model that is by construction size-invariant. However, due to its local-only communication rules, it lacks global knowledge. We propose OctreeNCA by generalizing the neighborhood definition using an octree data structure. Our generalized neighborhood definition enables the efficient traversal of global knowledge. Since deep learning frameworks are mainly developed for large multi-layer networks, their implementation does not fully leverage the advantages of NCAs. We implement an NCA inference function in CUDA that further reduces VRAM demands and increases inference speed. Our OctreeNCA segments high-resolution images and videos quickly while occupying 90% less VRAM than a UNet during evaluation. This allows us to segment 184 Megapixel pathology slices or 1-minute surgical videos at once.

BrainATCL: Adaptive Temporal Brain Connectivity Learning for Functional Link Prediction and Age Estimation

Yiran Huang, Amirhossein Nouranizadeh, Christine Ahrends, Mengjia Xu

arxiv logopreprintAug 9 2025
Functional Magnetic Resonance Imaging (fMRI) is an imaging technique widely used to study human brain activity. fMRI signals in areas across the brain transiently synchronise and desynchronise their activity in a highly structured manner, even when an individual is at rest. These functional connectivity dynamics may be related to behaviour and neuropsychiatric disease. To model these dynamics, temporal brain connectivity representations are essential, as they reflect evolving interactions between brain regions and provide insight into transient neural states and network reconfigurations. However, conventional graph neural networks (GNNs) often struggle to capture long-range temporal dependencies in dynamic fMRI data. To address this challenge, we propose BrainATCL, an unsupervised, nonparametric framework for adaptive temporal brain connectivity learning, enabling functional link prediction and age estimation. Our method dynamically adjusts the lookback window for each snapshot based on the rate of newly added edges. Graph sequences are subsequently encoded using a GINE-Mamba2 backbone to learn spatial-temporal representations of dynamic functional connectivity in resting-state fMRI data of 1,000 participants from the Human Connectome Project. To further improve spatial modeling, we incorporate brain structure and function-informed edge attributes, i.e., the left/right hemispheric identity and subnetwork membership of brain regions, enabling the model to capture biologically meaningful topological patterns. We evaluate our BrainATCL on two tasks: functional link prediction and age estimation. The experimental results demonstrate superior performance and strong generalization, including in cross-session prediction scenarios.

Supporting intraoperative margin assessment using deep learning for automatic tumour segmentation in breast lumpectomy micro-PET-CT.

Maris L, Göker M, De Man K, Van den Broeck B, Van Hoecke S, Van de Vijver K, Vanhove C, Keereman V

pubmed logopapersAug 9 2025
Complete tumour removal is vital in curative breast cancer (BCa) surgery to prevent recurrence. Recently, [<sup>18</sup>F]FDG micro-PET-CT of lumpectomy specimens has shown promise for intraoperative margin assessment (IMA). To aid interpretation, we trained a 2D Residual U-Net to delineate invasive carcinoma of no special type in micro-PET-CT lumpectomy images. We collected 53 BCa lamella images from 19 patients with true histopathology-defined tumour segmentations. Group five-fold cross-validation yielded a dice similarity coefficient of 0.71 ± 0.20 for segmentation. Afterwards, an ensemble model was generated to segment tumours and predict margin status. Comparing predicted and true histopathological margin status in a separate set of 31 micro-PET-CT lumpectomy images of 31 patients achieved an F1 score of 84%, closely matching the mean performance of seven physicians who manually interpreted the same images. This model represents an important step towards a decision-support system that enhances micro-PET-CT-based IMA in BCa, facilitating its clinical adoption.

Prediction of Benign and Malignant Small Renal Masses Using CT-Derived Extracellular Volume Fraction: An Interpretable Machine Learning Model.

Guo Y, Fang Q, Li Y, Yang D, Chen L, Bai G

pubmed logopapersAug 9 2025
We developed a machine learning model comprising morphological characteristics, enhancement dynamics, and extracellular volume (ECV) fractions for distinguishing malignant and benign small renal masses (SRMs), supporting personalised management. This retrospective analysis involved 230 patients who underwent SRM resection with preoperative imaging, including 185 internal and 45 external cases. The internal cohort was split into training (n=136) and validation (n=49) sets. Histopathological evaluation categorised the lesions as renal cell carcinomas (n=183) or benign masses (n=47). Eleven multiphasic contrast-enhanced computed tomography (CT) parameters, including the ECV fraction, were manually measured, along with clinical and laboratory data. Feature selection involved univariate analysis and least absolute shrinkage and selection operator regularisation. Feature selection informed various machine learning classifiers, and performance was evaluated using receiver operating characteristic curves and classification tests. The optimal model was interpreted using SHapley Additive exPlanations (SHAP). The analysis included 183 carcinoma and 47 benign SRM cases. Feature selection identified seven discriminative parameters, including the ECV fraction, which informed multiple machine learning models. The Extreme Gradient Boosting model incorporating ECV exhibited optimal performance in distinguishing malignant and benign SRMs, achieving area under the curve values of 0.993 (internal training set), 0.986 (internal validation set), and 0.951 (external test set). SHAP analysis confirmed ECV as the top contributor to SRM characterisation. The integration of multiphase contrast-enhanced CT-derived ECV fraction with conventional contrast-enhanced CT parameters demonstrated diagnostic efficacy in differentiating malignant and benign SRMs.

FoundBioNet: A Foundation-Based Model for IDH Genotyping of Glioma from Multi-Parametric MRI

Somayeh Farahani, Marjaneh Hejazi, Antonio Di Ieva, Sidong Liu

arxiv logopreprintAug 9 2025
Accurate, noninvasive detection of isocitrate dehydrogenase (IDH) mutation is essential for effective glioma management. Traditional methods rely on invasive tissue sampling, which may fail to capture a tumor's spatial heterogeneity. While deep learning models have shown promise in molecular profiling, their performance is often limited by scarce annotated data. In contrast, foundation deep learning models offer a more generalizable approach for glioma imaging biomarkers. We propose a Foundation-based Biomarker Network (FoundBioNet) that utilizes a SWIN-UNETR-based architecture to noninvasively predict IDH mutation status from multi-parametric MRI. Two key modules are incorporated: Tumor-Aware Feature Encoding (TAFE) for extracting multi-scale, tumor-focused features, and Cross-Modality Differential (CMD) for highlighting subtle T2-FLAIR mismatch signals associated with IDH mutation. The model was trained and validated on a diverse, multi-center cohort of 1705 glioma patients from six public datasets. Our model achieved AUCs of 90.58%, 88.08%, 65.41%, and 80.31% on independent test sets from EGD, TCGA, Ivy GAP, RHUH, and UPenn, consistently outperforming baseline approaches (p <= 0.05). Ablation studies confirmed that both the TAFE and CMD modules are essential for improving predictive accuracy. By integrating large-scale pretraining and task-specific fine-tuning, FoundBioNet enables generalizable glioma characterization. This approach enhances diagnostic accuracy and interpretability, with the potential to enable more personalized patient care.

LWT-ARTERY-LABEL: A Lightweight Framework for Automated Coronary Artery Identification

Shisheng Zhang, Ramtin Gharleghi, Sonit Singh, Daniel Moses, Dona Adikari, Arcot Sowmya, Susann Beier

arxiv logopreprintAug 9 2025
Coronary artery disease (CAD) remains the leading cause of death globally, with computed tomography coronary angiography (CTCA) serving as a key diagnostic tool. However, coronary arterial analysis using CTCA, such as identifying artery-specific features from computational modelling, is labour-intensive and time-consuming. Automated anatomical labelling of coronary arteries offers a potential solution, yet the inherent anatomical variability of coronary trees presents a significant challenge. Traditional knowledge-based labelling methods fall short in leveraging data-driven insights, while recent deep-learning approaches often demand substantial computational resources and overlook critical clinical knowledge. To address these limitations, we propose a lightweight method that integrates anatomical knowledge with rule-based topology constraints for effective coronary artery labelling. Our approach achieves state-of-the-art performance on benchmark datasets, providing a promising alternative for automated coronary artery labelling.

Multivariate Fields of Experts

Stanislas Ducotterd, Michael Unser

arxiv logopreprintAug 8 2025
We introduce the multivariate fields of experts, a new framework for the learning of image priors. Our model generalizes existing fields of experts methods by incorporating multivariate potential functions constructed via Moreau envelopes of the $\ell_\infty$-norm. We demonstrate the effectiveness of our proposal across a range of inverse problems that include image denoising, deblurring, compressed-sensing magnetic-resonance imaging, and computed tomography. The proposed approach outperforms comparable univariate models and achieves performance close to that of deep-learning-based regularizers while being significantly faster, requiring fewer parameters, and being trained on substantially fewer data. In addition, our model retains a relatively high level of interpretability due to its structured design.
Page 4 of 90894 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.