Sort by:
Page 395 of 7367356 results

Dantas J, Barros G, Mutarelli A, Dagostin C, Romeiro P, Almirón G, Felix N, Pinheiro A, Bannach MA

pubmed logopapersJul 30 2025
Large vessel occlusion (LVO) accounts for a third of all ischemic strokes. Artificial intelligence (AI) has shown good accuracy in identifying LVOs on computed tomography angiograms (CTA). We sought to analyze whether AI-adjudicated CTA improves workflow times and clinical outcomes in patients with confirmed LVOs. We systematically searched PubMed, Embase, and Web of Science for studies comparing initial radiological assessment assisted by AI softwares versus standard assessment of patients with acute LVO strokes. Results were pooled using a random-effects model as mean differences for continuous outcomes or odds ratio (OR) for dichotomous outcomes, along with 95% confidence intervals (CI). We included 9 studies comprising 1,270 patients, of whom 671 (52.8%) had AI-assisted radiological assessment. AI consistently improved treatment times when compared to standard assessment, as evidenced by a mean reduction of 20.55 minutes in door-to-groin time (95% CI -36.69 to -4.42 minutes; p<0.01) and a reduction of 14.99 minutes in CTA to reperfusion (95% CI -28.45 to -1.53 minutes; p=0.03). Functional independence, defined as a modified Rankin scale 0-2, occurred at similar rates in the AI-supported group and with the standard workflow (OR 1.27; 95% CI 0.92 to 1.76; p=0.14), as did mortality (OR 0.71; 95% CI 0.27 to 1.88; p=0.49). The incorporation of AI softwares for LVO detection in acute ischemic stroke enhanced workflow efficiency and was associated with decreased time to treatment. However, AI did not improve clinical outcomes as compared with standard assessment.

Kang X, Lin J, Zhao K, Yan S, Chen P, Wang D, Yao H, Zhou B, Yu C, Wang P, Liao Z, Chen Y, Zhang X, Han Y, Lu J, Liu Y

pubmed logopapersJul 30 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To examine common patterns among different computer-aided diagnosis (CAD) models for Alzheimer's disease (AD) using structural MRI data and to characterize the clinical and imaging features associated with their misclassifications. Materials and Methods This retrospective study utilized 3258 baseline structural MRIs from five multisite datasets and two multidisease datasets collected between September 2005 and December 2019. The 3D Nested Hierarchical Transformer (3DNesT) model and other CAD techniques were utilized for AD classification using 10-fold cross-validation and cross-dataset validation. Subgroup analysis of CAD-misclassified individuals compared clinical/neuroimaging biomarkers using independent <i>t</i> tests with Bonferroni correction. Results This study included 1391 patients with AD (mean age, 72.1 ± 9.2 years, 757 female), 205 with other neurodegenerative diseases (mean age, 64.9 ± 9.9 years, 117 male), and 1662 healthy controls (mean age, 70.6 ± 7.6 years, 935 female). The 3DNesT model achieved 90.1 ± 2.3% crossvalidation accuracy and 82.2%, 90.1%, and 91.6% in three external datasets. Further analysis suggested that false negative (FN) subgroup (<i>n</i> = 223) exhibited minimal atrophy and better cognitive performance than true positive (TP) subgroup (MMSE, FN, 21.4 ± 4.4; TP, 19.7 ± 5.7; <i>P<sub>FWE</sub></i> < 0.001), despite displaying similar levels of amyloid beta (FN, 705.9 ± 353.9; TP, 665.7 ± 305.8; <i>P<sub>FWE</sub></i> = 0.47), Tau (FN, 352.4 ± 166.8; TP, 371.0 ± 141.8; <i>P<sub>FWE</sub></i> = 0.47) burden. Conclusion FN subgroup exhibited atypical structural MRI patterns and clinical measures, fundamentally limiting the diagnostic performance of CAD models based solely on structural MRI. ©RSNA, 2025.

Weide Liu, Wei Zhou, Jun Liu, Ping Hu, Jun Cheng, Jungong Han, Weisi Lin

arxiv logopreprintJul 30 2025
Feature matching is a cornerstone task in computer vision, essential for applications such as image retrieval, stereo matching, 3D reconstruction, and SLAM. This survey comprehensively reviews modality-based feature matching, exploring traditional handcrafted methods and emphasizing contemporary deep learning approaches across various modalities, including RGB images, depth images, 3D point clouds, LiDAR scans, medical images, and vision-language interactions. Traditional methods, leveraging detectors like Harris corners and descriptors such as SIFT and ORB, demonstrate robustness under moderate intra-modality variations but struggle with significant modality gaps. Contemporary deep learning-based methods, exemplified by detector-free strategies like CNN-based SuperPoint and transformer-based LoFTR, substantially improve robustness and adaptability across modalities. We highlight modality-aware advancements, such as geometric and depth-specific descriptors for depth images, sparse and dense learning methods for 3D point clouds, attention-enhanced neural networks for LiDAR scans, and specialized solutions like the MIND descriptor for complex medical image matching. Cross-modal applications, particularly in medical image registration and vision-language tasks, underscore the evolution of feature matching to handle increasingly diverse data interactions.

Haddadi Avval A, Banerjee S, Zielke J, Kann BH, Mueller S, Rauschecker AM

pubmed logopapersJul 30 2025
Diffuse midline glioma (DMG) is a rare, aggressive, and fatal tumor that largely occurs in the pediatric population. To improve outcomes, it is important to characterize DMGs, which can be performed via magnetic resonance imaging (MRI) assessment. Recently, artificial intelligence (AI) and advanced imaging have demonstrated their potential to improve the evaluation of various brain tumors, gleaning more information from imaging data than is possible without these methods. This narrative review compiles the existing literature on the intersection of MRI-based AI use and DMG tumors. The applications of AI in DMG revolve around classification and diagnosis, segmentation, radiogenomics, and prognosis/survival prediction. Currently published articles have utilized a wide spectrum of AI algorithms, from traditional machine learning and radiomics to neural networks. Challenges include the lack of cohorts of DMG patients with publicly available, multi-institutional, multimodal imaging and genomics datasets as well as the overall rarity of the disease. As an adjunct to AI, advanced MRI techniques, including diffusion-weighted imaging, perfusion-weighted imaging, and Magnetic Resonance Spectroscopy (MRS), as well as positron emission tomography (PET), provide additional insights into DMGs. Establishing AI models in conjunction with advanced imaging modalities has the potential to push clinical practice toward precision medicine.

Patryk Rygiel, Julian Suk, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink

arxiv logopreprintJul 30 2025
Abdominal aortic aneurysms (AAAs) are pathologic dilatations of the abdominal aorta posing a high fatality risk upon rupture. Studying AAA progression and rupture risk often involves in-silico blood flow modelling with computational fluid dynamics (CFD) and extraction of hemodynamic factors like time-averaged wall shear stress (TAWSS) or oscillatory shear index (OSI). However, CFD simulations are known to be computationally demanding. Hence, in recent years, geometric deep learning methods, operating directly on 3D shapes, have been proposed as compelling surrogates, estimating hemodynamic parameters in just a few seconds. In this work, we propose a geometric deep learning approach to estimating hemodynamics in AAA patients, and study its generalisability to common factors of real-world variation. We propose an E(3)-equivariant deep learning model utilising novel robust geometrical descriptors and projective geometric algebra. Our model is trained to estimate transient WSS using a dataset of CT scans of 100 AAA patients, from which lumen geometries are extracted and reference CFD simulations with varying boundary conditions are obtained. Results show that the model generalizes well within the distribution, as well as to the external test set. Moreover, the model can accurately estimate hemodynamics across geometry remodelling and changes in boundary conditions. Furthermore, we find that a trained model can be applied to different artery tree topologies, where new and unseen branches are added during inference. Finally, we find that the model is to a large extent agnostic to mesh resolution. These results show the accuracy and generalisation of the proposed model, and highlight its potential to contribute to hemodynamic parameter estimation in clinical practice.

Dongli He, Hu Wang, Mohammad Yaqub

arxiv logopreprintJul 30 2025
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.

Ashkan Moradi, Fadila Zerka, Joeran S. Bosma, Mohammed R. S. Sunoqrot, Bendik S. Abrahamsen, Derya Yakar, Jeroen Geerdink, Henkjan Huisman, Tone Frost Bathen, Mattijs Elschot

arxiv logopreprintJul 30 2025
Purpose: To develop and optimize a federated learning (FL) framework across multiple clients for biparametric MRI prostate segmentation and clinically significant prostate cancer (csPCa) detection. Materials and Methods: A retrospective study was conducted using Flower FL to train a nnU-Net-based architecture for MRI prostate segmentation and csPCa detection, using data collected from January 2010 to August 2021. Model development included training and optimizing local epochs, federated rounds, and aggregation strategies for FL-based prostate segmentation on T2-weighted MRIs (four clients, 1294 patients) and csPCa detection using biparametric MRIs (three clients, 1440 patients). Performance was evaluated on independent test sets using the Dice score for segmentation and the Prostate Imaging: Cancer Artificial Intelligence (PI-CAI) score, defined as the average of the area under the receiver operating characteristic curve and average precision, for csPCa detection. P-values for performance differences were calculated using permutation testing. Results: The FL configurations were independently optimized for both tasks, showing improved performance at 1 epoch 300 rounds using FedMedian for prostate segmentation and 5 epochs 200 rounds using FedAdagrad, for csPCa detection. Compared with the average performance of the clients, the optimized FL model significantly improved performance in prostate segmentation and csPCa detection on the independent test set. The optimized FL model showed higher lesion detection performance compared to the FL-baseline model, but no evidence of a difference was observed for prostate segmentation. Conclusions: FL enhanced the performance and generalizability of MRI prostate segmentation and csPCa detection compared with local models, and optimizing its configuration further improved lesion detection performance.

Shenghao Zhu, Yifei Chen, Weihong Chen, Yuanhan Wang, Chang Liu, Shuo Jiang, Feiwei Qin, Changmiao Wang

arxiv logopreprintJul 30 2025
Accurate and reliable brain tumor segmentation, particularly when dealing with missing modalities, remains a critical challenge in medical image analysis. Previous studies have not fully resolved the challenges of tumor boundary segmentation insensitivity and feature transfer in the absence of key imaging modalities. In this study, we introduce MST-KDNet, aimed at addressing these critical issues. Our model features Multi-Scale Transformer Knowledge Distillation to effectively capture attention weights at various resolutions, Dual-Mode Logit Distillation to improve the transfer of knowledge, and a Global Style Matching Module that integrates feature matching with adversarial learning. Comprehensive experiments conducted on the BraTS and FeTS 2024 datasets demonstrate that MST-KDNet surpasses current leading methods in both Dice and HD95 scores, particularly in conditions with substantial modality loss. Our approach shows exceptional robustness and generalization potential, making it a promising candidate for real-world clinical applications. Our source code is available at https://github.com/Quanato607/MST-KDNet.

Tim Flühmann, Alceu Bissoto, Trung-Dung Hoang, Lisa M. Koch

arxiv logopreprintJul 30 2025
Performance monitoring is essential for safe clinical deployment of image classification models. However, because ground-truth labels are typically unavailable in the target dataset, direct assessment of real-world model performance is infeasible. State-of-the-art performance estimation methods address this by leveraging confidence scores to estimate the target accuracy. Despite being a promising direction, the established methods mainly estimate the model's accuracy and are rarely evaluated in a clinical domain, where strong class imbalances and dataset shifts are common. Our contributions are twofold: First, we introduce generalisations of existing performance prediction methods that directly estimate the full confusion matrix. Then, we benchmark their performance on chest x-ray data in real-world distribution shifts as well as simulated covariate and prevalence shifts. The proposed confusion matrix estimation methods reliably predicted clinically relevant counting metrics on medical images under distribution shifts. However, our simulated shift scenarios exposed important failure modes of current performance estimation techniques, calling for a better understanding of real-world deployment contexts when implementing these performance monitoring techniques for postmarket surveillance of medical AI models.

Penghan Zhu, Shurui Mei, Shushan Chen, Xiaobo Chu, Shanbo He, Ziyi Liu

arxiv logopreprintJul 30 2025
This study proposes a deep learning-based framework for automated segmentation of brain regions and classification of amyloid positivity using positron emission tomography (PET) images alone, without the need for structural MRI or CT. A 3D U-Net architecture with four layers of depth was trained and validated on a dataset of 200 F18-florbetapir amyloid-PET scans, with an 130/20/50 train/validation/test split. Segmentation performance was evaluated using Dice similarity coefficients across 30 brain regions, with scores ranging from 0.45 to 0.88, demonstrating high anatomical accuracy, particularly in subcortical structures. Quantitative fidelity of PET uptake within clinically relevant regions. Precuneus, prefrontal cortex, gyrus rectus, and lateral temporal cortex was assessed using normalized root mean square error, achieving values as low as 0.0011. Furthermore, the model achieved a classification accuracy of 0.98 for amyloid positivity based on regional uptake quantification, with an area under the ROC curve (AUC) of 0.99. These results highlight the model's potential for integration into PET only diagnostic pipelines, particularly in settings where structural imaging is not available. This approach reduces dependence on coregistration and manual delineation, enabling scalable, reliable, and reproducible analysis in clinical and research applications. Future work will focus on clinical validation and extension to diverse PET tracers including C11 PiB and other F18 labeled compounds.
Page 395 of 7367356 results
Show
per page

Ready to Sharpen Your Edge?

Subscribe to join 7,200+ peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.