Sort by:
Page 36 of 99986 results

Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.

Kan KY, Van Wyk A, Paterson T, Ninan N, Lysyganicz P, Tyagi I, Bhasi Lizi R, Boukrid F, Alfaifi M, Mishra A, Katraj SVK, Pooranachandran V

pubmed logopapersAug 6 2025
Brugada Syndrome (BrS) is an inherited cardiac ion channelopathy associated with an elevated risk of sudden cardiac death, particularly due to ventricular arrhythmias in structurally normal hearts. Affecting approximately 1 in 2,000 individuals, BrS is most prevalent among middle-aged males of Asian descent. Although diagnosis is based on the presence of a Type 1 electrocardiographic (ECG) pattern, either spontaneous or induced, accurately stratifying risk in asymptomatic and borderline patients remains a major clinical challenge. This review explores current and emerging approaches to BrS risk stratification, focusing on electrocardiographic, electrophysiological, imaging, and computational markers. Non-invasive ECG indicators such as the β-angle, fragmented QRS, S wave in lead I, early repolarisation, aVR sign, and transmural dispersion of repolarisation have demonstrated predictive value for arrhythmic events. Adjunctive tools like signal-averaged ECG, Holter monitoring, and exercise stress testing enhance diagnostic yield by capturing dynamic electrophysiological changes. In parallel, imaging modalities, particularly speckle-tracking echocardiography and cardiac magnetic resonance have revealed subclinical structural abnormalities in the right ventricular outflow tract and atria, challenging the paradigm of BrS as a purely electrical disorder. Invasive electrophysiological studies and substrate mapping have further clarified the anatomical basis of arrhythmogenesis, while risk scoring systems (e.g., Sieira, BRUGADA-RISK, PAT) and machine learning models offer new avenues for personalised risk assessment. Together, these advances underscore the importance of an integrated, multimodal approach to BrS risk stratification. Optimising these strategies is essential to guide implantable cardioverter-defibrillator decisions and improve outcomes in patients vulnerable to life-threatening arrhythmias.

Augmentation-based Domain Generalization and Joint Training from Multiple Source Domains for Whole Heart Segmentation

Franz Thaler, Darko Stern, Gernot Plank, Martin Urschler

arxiv logopreprintAug 6 2025
As the leading cause of death worldwide, cardiovascular diseases motivate the development of more sophisticated methods to analyze the heart and its substructures from medical images like Computed Tomography (CT) and Magnetic Resonance (MR). Semantic segmentations of important cardiac structures that represent the whole heart are useful to assess patient-specific cardiac morphology and pathology. Furthermore, accurate semantic segmentations can be used to generate cardiac digital twin models which allows e.g. electrophysiological simulation and personalized therapy planning. Even though deep learning-based methods for medical image segmentation achieved great advancements over the last decade, retaining good performance under domain shift -- i.e. when training and test data are sampled from different data distributions -- remains challenging. In order to perform well on domains known at training-time, we employ a (1) balanced joint training approach that utilizes CT and MR data in equal amounts from different source domains. Further, aiming to alleviate domain shift towards domains only encountered at test-time, we rely on (2) strong intensity and spatial augmentation techniques to greatly diversify the available training data. Our proposed whole heart segmentation method, a 5-fold ensemble with our contributions, achieves the best performance for MR data overall and a performance similar to the best performance for CT data when compared to a model trained solely on CT. With 93.33% DSC and 0.8388 mm ASSD for CT and 89.30% DSC and 1.2411 mm ASSD for MR data, our method demonstrates great potential to efficiently obtain accurate semantic segmentations from which patient-specific cardiac twin models can be generated.

NEARL-CLIP: Interacted Query Adaptation with Orthogonal Regularization for Medical Vision-Language Understanding

Zelin Peng, Yichen Zhao, Yu Huang, Piao Yang, Feilong Tang, Zhengqin Xu, Xiaokang Yang, Wei Shen

arxiv logopreprintAug 6 2025
Computer-aided medical image analysis is crucial for disease diagnosis and treatment planning, yet limited annotated datasets restrict medical-specific model development. While vision-language models (VLMs) like CLIP offer strong generalization capabilities, their direct application to medical imaging analysis is impeded by a significant domain gap. Existing approaches to bridge this gap, including prompt learning and one-way modality interaction techniques, typically focus on introducing domain knowledge to a single modality. Although this may offer performance gains, it often causes modality misalignment, thereby failing to unlock the full potential of VLMs. In this paper, we propose \textbf{NEARL-CLIP} (i\underline{N}teracted qu\underline{E}ry \underline{A}daptation with o\underline{R}thogona\underline{L} Regularization), a novel cross-modality interaction VLM-based framework that contains two contributions: (1) Unified Synergy Embedding Transformer (USEformer), which dynamically generates cross-modality queries to promote interaction between modalities, thus fostering the mutual enrichment and enhancement of multi-modal medical domain knowledge; (2) Orthogonal Cross-Attention Adapter (OCA). OCA introduces an orthogonality technique to decouple the new knowledge from USEformer into two distinct components: the truly novel information and the incremental knowledge. By isolating the learning process from the interference of incremental knowledge, OCA enables a more focused acquisition of new information, thereby further facilitating modality interaction and unleashing the capability of VLMs. Notably, NEARL-CLIP achieves these two contributions in a parameter-efficient style, which only introduces \textbf{1.46M} learnable parameters.

Segmenting Whole-Body MRI and CT for Multiorgan Anatomic Structure Delineation.

Häntze H, Xu L, Mertens CJ, Dorfner FJ, Donle L, Busch F, Kader A, Ziegelmayer S, Bayerl N, Navab N, Rueckert D, Schnabel J, Aerts HJWL, Truhn D, Bamberg F, Weiss J, Schlett CL, Ringhof S, Niendorf T, Pischon T, Kauczor HU, Nonnenmacher T, Kröncke T, Völzke H, Schulz-Menger J, Maier-Hein K, Hering A, Prokop M, van Ginneken B, Makowski MR, Adams LC, Bressem KK

pubmed logopapersAug 6 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop and validate MRSegmentator, a retrospective cross-modality deep learning model for multiorgan segmentation of MRI scans. Materials and Methods This retrospective study trained MRSegmentator on 1,200 manually annotated UK Biobank Dixon MRI sequences (50 participants), 221 in-house abdominal MRI sequences (177 patients), and 1228 CT scans from the TotalSegmentator-CT dataset. A human-in-the-loop annotation workflow leveraged cross-modality transfer learning from an existing CT segmentation model to segment 40 anatomic structures. The model's performance was evaluated on 900 MRI sequences from 50 participants in the German National Cohort (NAKO), 60 MRI sequences from AMOS22 dataset, and 29 MRI sequences from TotalSegmentator-MRI. Reference standard manual annotations were used for comparison. Metrics to assess segmentation quality included Dice Similarity Coefficient (DSC). Statistical analyses included organ-and sequence-specific mean ± SD reporting and two-sided <i>t</i> tests for demographic effects. Results 139 participants were evaluated; demographic information was available for 70 (mean age 52.7 years ± 14.0 [SD], 36 female). Across all test datasets, MRSegmentator demonstrated high class wise DSC for well-defined organs (lungs: 0.81-0.96, heart: 0.81-0.94) and organs with anatomic variability (liver: 0.82-0.96, kidneys: 0.77-0.95). Smaller structures showed lower DSC (portal/splenic veins: 0.64-0.78, adrenal glands: 0.56-0.69). The average DSC on the external testing using NAKO data, ranged from 0.85 ± 0.08 for T2-HASTE to 0.91 ± 0.05 for in-phase sequences. The model generalized well to CT, achieving mean DSC of 0.84 ± 0.12 on AMOS CT data. Conclusion MRSegmentator accurately segmented 40 anatomic structures on MRI and generalized to CT; outperforming existing open-source tools. Published under a CC BY 4.0 license.

Quantum Federated Learning in Healthcare: The Shift from Development to Deployment and from Models to Data.

Bhatia AS, Kais S, Alam MA

pubmed logopapersAug 6 2025
Healthcare organizations have a high volume of sensitive data and traditional technologies have limited storage capacity and computational resources. The prospect of sharing healthcare data for machine learning is more arduous due to firm regulations related to patient privacy. In recent years, federated learning has offered a solution to accelerate distributed machine learning addressing concerns related to data privacy and governance. Currently, the blend of quantum computing and machine learning has experienced significant attention from academic institutions and research communities. The ultimate objective of this work is to develop a federated quantum machine learning framework (FQML) to tackle the optimization, security, and privacy challenges in the healthcare industry for medical imaging tasks. In this work, we proposed federated quantum convolutional neural networks (QCNNs) with distributed training across edge devices. To demonstrate the feasibility of the proposed FQML framework, we performed extensive experiments on two benchmark medical datasets (Pneumonia MNIST, and CT kidney disease analysis), which are non-independently and non-identically partitioned among the healthcare institutions/clients. The proposed framework is validated and assessed via large-scale simulations. Based on our results, the quantum simulation experiments achieve performance levels on par with well-known classical CNN models, 86.3% accuracy on the pneumonia dataset and 92.8% on the CT-kidney dataset, while requiring fewer model parameters and consuming less data. Moreover, the client selection mechanism is proposed to reduce the computation overhead at each communication round, which effectively improves the convergence rate.

TCSAFormer: Efficient Vision Transformer with Token Compression and Sparse Attention for Medical Image Segmentation

Zunhui Xia, Hongxing Li, Libin Lan

arxiv logopreprintAug 6 2025
In recent years, transformer-based methods have achieved remarkable progress in medical image segmentation due to their superior ability to capture long-range dependencies. However, these methods typically suffer from two major limitations. First, their computational complexity scales quadratically with the input sequences. Second, the feed-forward network (FFN) modules in vanilla Transformers typically rely on fully connected layers, which limits models' ability to capture local contextual information and multiscale features critical for precise semantic segmentation. To address these issues, we propose an efficient medical image segmentation network, named TCSAFormer. The proposed TCSAFormer adopts two key ideas. First, it incorporates a Compressed Attention (CA) module, which combines token compression and pixel-level sparse attention to dynamically focus on the most relevant key-value pairs for each query. This is achieved by pruning globally irrelevant tokens and merging redundant ones, significantly reducing computational complexity while enhancing the model's ability to capture relationships between tokens. Second, it introduces a Dual-Branch Feed-Forward Network (DBFFN) module as a replacement for the standard FFN to capture local contextual features and multiscale information, thereby strengthening the model's feature representation capability. We conduct extensive experiments on three publicly available medical image segmentation datasets: ISIC-2018, CVC-ClinicDB, and Synapse, to evaluate the segmentation performance of TCSAFormer. Experimental results demonstrate that TCSAFormer achieves superior performance compared to existing state-of-the-art (SOTA) methods, while maintaining lower computational overhead, thus achieving an optimal trade-off between efficiency and accuracy.

Small Lesions-aware Bidirectional Multimodal Multiscale Fusion Network for Lung Disease Classification

Jianxun Yu, Ruiquan Ge, Zhipeng Wang, Cheng Yang, Chenyu Lin, Xianjun Fu, Jikui Liu, Ahmed Elazab, Changmiao Wang

arxiv logopreprintAug 6 2025
The diagnosis of medical diseases faces challenges such as the misdiagnosis of small lesions. Deep learning, particularly multimodal approaches, has shown great potential in the field of medical disease diagnosis. However, the differences in dimensionality between medical imaging and electronic health record data present challenges for effective alignment and fusion. To address these issues, we propose the Multimodal Multiscale Cross-Attention Fusion Network (MMCAF-Net). This model employs a feature pyramid structure combined with an efficient 3D multi-scale convolutional attention module to extract lesion-specific features from 3D medical images. To further enhance multimodal data integration, MMCAF-Net incorporates a multi-scale cross-attention module, which resolves dimensional inconsistencies, enabling more effective feature fusion. We evaluated MMCAF-Net on the Lung-PET-CT-Dx dataset, and the results showed a significant improvement in diagnostic accuracy, surpassing current state-of-the-art methods. The code is available at https://github.com/yjx1234/MMCAF-Net

CAPoxy: a feasibility study to investigate multispectral imaging in nailfold capillaroscopy

Taylor-Williams, M., Khalil, I., Manning, J., Dinsdale, G., Berks, M., Porcu, L., Wilkinson, S., Bohndiek, S., Murray, A.

medrxiv logopreprintAug 5 2025
BackgroundNailfold capillaroscopy enables visualisation of structural abnormalities in the microvasculature of patients with systemic sclerosis (SSc). The objective of this feasibility study was to determine whether multispectral imaging could provide functional assessment (differences in haemoglobin concentration or oxygenation) of capillaries to aid discrimination between healthy controls and patients with SSc. MSI of nailfold capillaries visualizes the smallest blood vessels and the impact of SSc on angiogenesis and their deformation, making it suitable for evaluating oxygenation-sensitive imaging techniques. Imaging of the nailfold capillaries offers tissue-specific oxygenation information, unlike pulse oximetry, which measures arterial blood oxygenation as a single-point measurement. MethodsThe CAPoxy study was a single-centre, cross-sectional, feasibility study of nailfold capillary multispectral imaging, comparing a cohort of patients with SSc to controls. A nine-band multispectral camera was used to image 22 individuals (10 patients with SSc and 12 controls). Linear mixed-effects models and summary statistics were used to compare the different regions of the nailfold (capillaries, surrounding edges, and outside area) between SSc and controls. A machine learning model was used to compare the two groups. ResultsPatients with SSc exhibited higher indicators of haemoglobin concentration in the capillary and adjacent regions compared to controls, which were significant in the regions surrounding the capillaries (p<0.001). There were also spectral differences between the SSc and controls groups that could indicate differences in oxygenation of the capillaries and surrounding tissue. Additionally, a machine learning model distinguished SSc patients from healthy controls with an accuracy of 84%, suggesting potential for multispectral imaging to classify SSc based on structural and functional microvascular changes. ConclusionsData indicates that multispectral imaging differentiates between patients with SSc from controls based on differences in vascular function. Further work to develop a targeted spectral camera would further improve the contrast between patients with SSc and controls, enabling better imaging. Key messagesMultispectral imaging holds promise for providing functional oxygenation measurement in nailfold capillaroscopy. Significant oxygenation differences between individuals with systemic sclerosis and healthy controls can be detected with multispectral imaging in the tissue surrounding capillaries.

The REgistry of Flow and Perfusion Imaging for Artificial INtelligEnce with PET(REFINE PET): Rationale and Design.

Ramirez G, Lemley M, Shanbhag A, Kwiecinski J, Miller RJH, Kavanagh PB, Liang JX, Dey D, Slipczuk L, Travin MI, Alexanderson E, Carvajal-Juarez I, Packard RRS, Al-Mallah M, Einstein AJ, Feher A, Acampa W, Knight S, Le VT, Mason S, Sanghani R, Wopperer S, Chareonthaitawee P, Buechel RR, Rosamond TL, deKemp RA, Berman DS, Di Carli MF, Slomka PJ

pubmed logopapersAug 5 2025
The REgistry of Flow and Perfusion Imaging for Artificial Intelligence with PET (REFINE PET) was established to collect multicenter PET and associated computed tomography (CT) images, together with clinical data and outcomes, into a comprehensive research resource. REFINE PET will enable validation and development of both standard and novel cardiac PET/CT processing methods. REFINE PET is a multicenter, international registry that contains both clinical and imaging data. The PET scans were processed using QPET software (Cedars-Sinai Medical Center, Los Angeles, CA), while the CT scans were processed using deep learning (DL) to detect coronary artery calcium (CAC). Patients were followed up for the occurrence of major adverse cardiovascular events (MACE), which include death, myocardial infarction, unstable angina, and late revascularization (>90 days from PET). The REFINE PET registry currently contains data for 35,588 patients from 14 sites, with additional patient data and sites anticipated. Comprehensive clinical data (including demographics, medical history, and stress test results) were integrated with more than 2200 imaging variables across 42 categories. The registry is poised to address a broad range of clinical questions, supported by correlating invasive angiography (within 6 months of MPI) in 5972 patients and a total of 9252 major adverse cardiovascular events during a median follow-up of 4.2 years. The REFINE PET registry leverages the integration of clinical, multimodality imaging, and novel quantitative and AI tools to advance the role of PET/CT MPI in diagnosis and risk stratification.

MedCAL-Bench: A Comprehensive Benchmark on Cold-Start Active Learning with Foundation Models for Medical Image Analysis

Ning Zhu, Xiaochuan Ma, Shaoting Zhang, Guotai Wang

arxiv logopreprintAug 5 2025
Cold-Start Active Learning (CSAL) aims to select informative samples for annotation without prior knowledge, which is important for improving annotation efficiency and model performance under a limited annotation budget in medical image analysis. Most existing CSAL methods rely on Self-Supervised Learning (SSL) on the target dataset for feature extraction, which is inefficient and limited by insufficient feature representation. Recently, pre-trained Foundation Models (FMs) have shown powerful feature extraction ability with a potential for better CSAL. However, this paradigm has been rarely investigated, with a lack of benchmarks for comparison of FMs in CSAL tasks. To this end, we propose MedCAL-Bench, the first systematic FM-based CSAL benchmark for medical image analysis. We evaluate 14 FMs and 7 CSAL strategies across 7 datasets under different annotation budgets, covering classification and segmentation tasks from diverse medical modalities. It is also the first CSAL benchmark that evaluates both the feature extraction and sample selection stages. Our experimental results reveal that: 1) Most FMs are effective feature extractors for CSAL, with DINO family performing the best in segmentation; 2) The performance differences of these FMs are large in segmentation tasks, while small for classification; 3) Different sample selection strategies should be considered in CSAL on different datasets, with Active Learning by Processing Surprisal (ALPS) performing the best in segmentation while RepDiv leading for classification. The code is available at https://github.com/HiLab-git/MedCAL-Bench.
Page 36 of 99986 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.