Sort by:
Page 35 of 99986 results

Coarse-to-Fine Joint Registration of MR and Ultrasound Images via Imaging Style Transfer

Junyi Wang, Xi Zhu, Yikun Guo, Zixi Wang, Haichuan Gao, Le Zhang, Fan Zhang

arxiv logopreprintAug 7 2025
We developed a pipeline for registering pre-surgery Magnetic Resonance (MR) images and post-resection Ultrasound (US) images. Our approach leverages unpaired style transfer using 3D CycleGAN to generate synthetic T1 images, thereby enhancing registration performance. Additionally, our registration process employs both affine and local deformable transformations for a coarse-to-fine registration. The results demonstrate that our approach improves the consistency between MR and US image pairs in most cases.

Enhancing Domain Generalization in Medical Image Segmentation With Global and Local Prompts.

Zhao C, Li X

pubmed logopapersAug 7 2025
Enhancing domain generalization (DG) is a crucial and compelling research pursuit within the field of medical image segmentation, owing to the inherent heterogeneity observed in medical images. The recent success with large-scale pre-trained vision models (PVMs), such as Vision Transformer (ViT), inspires us to explore their application in this specific area. While a straightforward strategy involves fine-tuning the PVM using supervised signals from the source domains, this approach overlooks the domain shift issue and neglects the rich knowledge inherent in the instances themselves. To overcome these limitations, we introduce a novel framework enhanced by global and local prompts (GLPs). Specifically, to adapt PVM in the medical DG scenario, we explicitly separate domain-shared and domain-specific knowledge in the form of GLPs. Furthermore, we develop an individualized domain adapter to intricately investigate the relationship between each target domain sample and the source domains. To harness the inherent knowledge within instances, we devise two innovative regularization terms from both the consistency and anatomy perspectives, encouraging the model to preserve instance discriminability and organ position invariance. Extensive experiments and in-depth discussions in both vanilla and semi-supervised DG scenarios deriving from five diverse medical datasets consistently demonstrate the superior segmentation performance achieved by GLP. Our code and datasets are publicly available at https://github.com/xmed-lab/GLP.

MLAgg-UNet: Advancing Medical Image Segmentation with Efficient Transformer and Mamba-Inspired Multi-Scale Sequence.

Jiang J, Lei S, Li H, Sun Y

pubmed logopapersAug 7 2025
Transformers and state space sequence models (SSMs) have attracted interest in biomedical image segmentation for their ability to capture long-range dependency. However, traditional visual state space (VSS) methods suffer from the incompatibility of image tokens with autoregressive assumption. Although Transformer attention does not require this assumption, its high computational cost limits effective channel-wise information utilization. To overcome these limitations, we propose the Mamba-Like Aggregated UNet (MLAgg-UNet), which introduces Mamba-inspired mechanism to enrich Transformer channel representation and exploit implicit autoregressive characteristic within U-shaped architecture. For establishing dependencies among image tokens in single scale, the Mamba-Like Aggregated Attention (MLAgg) block is designed to balance representational ability and computational efficiency. Inspired by the human foveal vision system, Mamba macro-structure, and differential attention, MLAgg block can slide its focus over each image token, suppress irrelevant tokens, and simultaneously strengthen channel-wise information utilization. Moreover, leveraging causal relationships between consecutive low-level and high-level features in U-shaped architecture, we propose the Multi-Scale Mamba Module with Implicit Causality (MSMM) to optimize complementary information across scales. Embedded within skip connections, this module enhances semantic consistency between encoder and decoder features. Extensive experiments on four benchmark datasets, including AbdomenMRI, ACDC, BTCV, and EndoVis17, which cover MRI, CT, and endoscopy modalities, demonstrate that the proposed MLAgg-UNet consistently outperforms state-of-the-art CNN-based, Transformer-based, and Mamba-based methods. Specifically, it achieves improvements of at least 1.24%, 0.20%, 0.33%, and 0.39% in DSC scores on these datasets, respectively. These results highlight the model's ability to effectively capture feature correlations and integrate complementary multi-scale information, providing a robust solution for medical image segmentation. The implementation is publicly available at https://github.com/aticejiang/MLAgg-UNet.

A Multimodal Deep Learning Ensemble Framework for Building a Spine Surgery Triage System.

Siavashpour M, McCabe E, Nataraj A, Pareek N, Zaiane O, Gross D

pubmed logopapersAug 7 2025
Spinal radiology reports and physician-completed questionnaires serve as crucial resources for medical decision-making for patients experiencing low back and neck pain. However, due to the time-consuming nature of this process, individuals with severe conditions may experience a deterioration in their health before receiving professional care. In this work, we propose an ensemble framework built on top of pre-trained BERT-based models which can classify patients on their need for surgery given their different data modalities including radiology reports and questionnaires. Our results demonstrate that our approach exceeds previous studies, effectively integrating information from multiple data modalities and serving as a valuable tool to assist physicians in decision making.

On the effectiveness of multimodal privileged knowledge distillation in two vision transformer based diagnostic applications

Simon Baur, Alexandra Benova, Emilio Dolgener Cantú, Jackie Ma

arxiv logopreprintAug 6 2025
Deploying deep learning models in clinical practice often requires leveraging multiple data modalities, such as images, text, and structured data, to achieve robust and trustworthy decisions. However, not all modalities are always available at inference time. In this work, we propose multimodal privileged knowledge distillation (MMPKD), a training strategy that utilizes additional modalities available solely during training to guide a unimodal vision model. Specifically, we used a text-based teacher model for chest radiographs (MIMIC-CXR) and a tabular metadata-based teacher model for mammography (CBIS-DDSM) to distill knowledge into a vision transformer student model. We show that MMPKD can improve the resulting attention maps' zero-shot capabilities of localizing ROI in input images, while this effect does not generalize across domains, as contrarily suggested by prior research.

The Effectiveness of Large Language Models in Providing Automated Feedback in Medical Imaging Education: A Protocol for a Systematic Review

Al-Mashhadani, M., Ajaz, F., Guraya, S. S., Ennab, F.

medrxiv logopreprintAug 6 2025
BackgroundLarge Language Models (LLMs) represent an ever-emerging and rapidly evolving generative artificial intelligence (AI) modality with promising developments in the field of medical education. LLMs can provide automated feedback services to medical trainees (i.e. medical students, residents, fellows, etc.) and possibly serve a role in medical imaging education. AimThis systematic review aims to comprehensively explore the current applications and educational outcomes of LLMs in providing automated feedback on medical imaging reports. MethodsThis study employs a comprehensive systematic review strategy, involving an extensive search of the literature (Pubmed, Scopus, Embase, and Cochrane), data extraction, and synthesis of the data. ConclusionThis systematic review will highlight the best practices of LLM use in automated feedback of medical imaging reports and guide further development of these models.

Foundation models for radiology-the position of the AI for Health Imaging (AI4HI) network.

de Almeida JG, Alberich LC, Tsakou G, Marias K, Tsiknakis M, Lekadir K, Marti-Bonmati L, Papanikolaou N

pubmed logopapersAug 6 2025
Foundation models are large models trained on big data which can be used for downstream tasks. In radiology, these models can potentially address several gaps in fairness and generalization, as they can be trained on massive datasets without labelled data and adapted to tasks requiring data with a small number of descriptions. This reduces one of the limiting bottlenecks in clinical model construction-data annotation-as these models can be trained through a variety of techniques that require little more than radiological images with or without their corresponding radiological reports. However, foundation models may be insufficient as they are affected-to a smaller extent when compared with traditional supervised learning approaches-by the same issues that lead to underperforming models, such as a lack of transparency/explainability, and biases. To address these issues, we advocate that the development of foundation models should not only be pursued but also accompanied by the development of a decentralized clinical validation and continuous training framework. This does not guarantee the resolution of the problems associated with foundation models, but it enables developers, clinicians and patients to know when, how and why models should be updated, creating a clinical AI ecosystem that is better capable of serving all stakeholders. CRITICAL RELEVANCE STATEMENT: Foundation models may mitigate issues like bias and poor generalization in radiology AI, but challenges persist. We propose a decentralized, cross-institutional framework for continuous validation and training to enhance model reliability, safety, and clinical utility. KEY POINTS: Foundation models trained on large datasets reduce annotation burdens and improve fairness and generalization in radiology. Despite improvements, they still face challenges like limited transparency, explainability, and residual biases. A decentralized, cross-institutional framework for clinical validation and continuous training can strengthen reliability and inclusivity in clinical AI.

The development of a multimodal prediction model based on CT and MRI for the prognosis of pancreatic cancer.

Dou Z, Lin J, Lu C, Ma X, Zhang R, Zhu J, Qin S, Xu C, Li J

pubmed logopapersAug 6 2025
To develop and validate a hybrid radiomics model to predict the overall survival in pancreatic cancer patients and identify risk factors that affect patient prognosis. We conducted a retrospective analysis of 272 pancreatic cancer patients diagnosed at the First Affiliated Hospital of Soochow University from January 2013 to December 2023, and divided them into a training set and a test set at a ratio of 7:3. Pre-treatment contrast-enhanced computed tomography (CT), magnetic resonance imaging (MRI) images, and clinical features were collected. Dimensionality reduction was performed on the radiomics features using principal component analysis (PCA), and important features with non-zero coefficients were selected using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. In the training set, we built clinical prediction models using both random survival forests (RSF) and traditional Cox regression analysis. These models included a radiomics model based on contrast-enhanced CT, a radiomics model based on MRI, a clinical model, 3 bimodal models combining two types of features, and a multimodal model combining radiomics features with clinical features. Model performance evaluation in the test set was based on two dimensions: discrimination and calibration. In addition, risk stratification was performed in the test set based on predicted risk scores to evaluate the model's prognostic utility. The RSF-based hybrid model performed best with a C-index of 0.807 and a Brier score of 0.101, outperforming the COX hybrid model (C-index of 0.726 and a Brier score of 0.145) and other unimodal and bimodal models. The SurvSHAP(t) plot highlighted CA125 as the most important variable. In the test set, patients were stratified into high- and low-risk groups based on the predicted risk scores, and Kaplan-Meier analysis demonstrated a significant survival difference between the two groups (p < 0.0001). A multi-modal model using radiomics based on clinical tabular data and contrast-enhanced CT and MRI was developed by RSF, presenting strengths in predicting prognosis in pancreatic cancer patients.

Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.

Kan KY, Van Wyk A, Paterson T, Ninan N, Lysyganicz P, Tyagi I, Bhasi Lizi R, Boukrid F, Alfaifi M, Mishra A, Katraj SVK, Pooranachandran V

pubmed logopapersAug 6 2025
Brugada Syndrome (BrS) is an inherited cardiac ion channelopathy associated with an elevated risk of sudden cardiac death, particularly due to ventricular arrhythmias in structurally normal hearts. Affecting approximately 1 in 2,000 individuals, BrS is most prevalent among middle-aged males of Asian descent. Although diagnosis is based on the presence of a Type 1 electrocardiographic (ECG) pattern, either spontaneous or induced, accurately stratifying risk in asymptomatic and borderline patients remains a major clinical challenge. This review explores current and emerging approaches to BrS risk stratification, focusing on electrocardiographic, electrophysiological, imaging, and computational markers. Non-invasive ECG indicators such as the β-angle, fragmented QRS, S wave in lead I, early repolarisation, aVR sign, and transmural dispersion of repolarisation have demonstrated predictive value for arrhythmic events. Adjunctive tools like signal-averaged ECG, Holter monitoring, and exercise stress testing enhance diagnostic yield by capturing dynamic electrophysiological changes. In parallel, imaging modalities, particularly speckle-tracking echocardiography and cardiac magnetic resonance have revealed subclinical structural abnormalities in the right ventricular outflow tract and atria, challenging the paradigm of BrS as a purely electrical disorder. Invasive electrophysiological studies and substrate mapping have further clarified the anatomical basis of arrhythmogenesis, while risk scoring systems (e.g., Sieira, BRUGADA-RISK, PAT) and machine learning models offer new avenues for personalised risk assessment. Together, these advances underscore the importance of an integrated, multimodal approach to BrS risk stratification. Optimising these strategies is essential to guide implantable cardioverter-defibrillator decisions and improve outcomes in patients vulnerable to life-threatening arrhythmias.

Development and validation of the multidimensional machine learning model for preoperative risk stratification in papillary thyroid carcinoma: a multicenter, retrospective cohort study.

Feng JW, Zhang L, Yang YX, Qin RJ, Liu SQ, Qin AC, Jiang Y

pubmed logopapersAug 6 2025
This study aims to develop and validate a multi-modal machine learning model for preoperative risk stratification in papillary thyroid carcinoma (PTC), addressing limitations of current systems that rely on postoperative pathological features. We analyzed 974 PTC patients from three medical centers in China using a multi-modal approach integrating: (1) clinical indicators, (2) immunological indices, (3) ultrasound radiomics features, and (4) CT radiomics features. Our methodology employed gradient boosting machine for feature selection and random forest for classification, with model interpretability provided through SHapley Additive exPlanations (SHAP) analysis. The model was validated on internal (n = 225) and two external cohorts (n = 51, n = 174). The final 15-feature model achieved AUCs of 0.91, 0.84, and 0.77 across validation cohorts, improving to 0.96, 0.95, and 0.89 after cohort-specific refitting. SHAP analysis revealed CT texture features, ultrasound morphological features, and immune-inflammatory markers as key predictors, with consistent patterns across validation sites despite center-specific variations. Subgroup analysis showed superior performance in tumors > 1 cm and patients without extrathyroidal extension. Our multi-modal machine learning approach provides accurate preoperative risk stratification for PTC with robust cross-center applicability. This computational framework for integrating heterogeneous imaging and clinical data demonstrates the potential of multi-modal joint learning in healthcare imaging to transform clinical decision-making by enabling personalized treatment planning.
Page 35 of 99986 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.